Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 4835-4856, 2024.
Article in English | MEDLINE | ID: mdl-38828200

ABSTRACT

Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.


Subject(s)
Anti-Bacterial Agents , Dental Implants , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Animals , Biofilms/drug effects
2.
Opt Express ; 32(11): 19676-19683, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859097

ABSTRACT

The discovery of hybrid states in strong coupling interaction has gained growing attention in cavity-quantum electrodynamics research owing to its fundamental directives and potential in advanced optical applications. The ultra-confined mode volume of plasmonic cavity gold nanorods (AuNRs), particularly at the nanorod tip "hotspot" provides a large coupling strength, a prerequisite for a coherent energy exchange in the strong coupling regime. Here, we reported a remarkable Rabi splitting of ∼231 meV between gold nanorods longitudinal localized surface plasmon resonance (LLSPR) mode and quantum dots (QDs) at ambient conditions, monitored by dielectric medium tuning. Numerical simulations confirmed the result, displaying absorption spectral splitting.

3.
Polymers (Basel) ; 15(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36616581

ABSTRACT

Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge. The Pd-Chit@MnFe2O4 catalyst exhibited high catalytic activity in 4-nitrophenol and 4-nitroaniline reductions, with respective turnover frequencies of 357.1 min-1 and 571.4 min-1, respectively. The catalyst can also be recovered easily by magnetic separation after each reaction. Additionally, the Pd-Chit@MnFe2O4 catalyst performed well in the reductive deprotection of allyl carbamate. Coating the catalyst with chitosan reduced the Pd leaching and its cytotoxicity. Therefore, the catalytic activity of Pd-Chit@MnFe2O4 was proven to be unrestricted in biology conditions.

SELECTION OF CITATIONS
SEARCH DETAIL