Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(28): 5707-5720, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38967960

ABSTRACT

To understand the reactivity of resonantly stabilized radicals, often found in relevant concentrations in gaseous environments, it is important to determine their main reaction pathways. Here, it is investigated whether the fulvenallenyl radical (C7H5·) reacts preferentially with closed-shell molecules or radicals. Electronic structure calculations on the C10H9 potential energy surface accessed by the reactions of C7H5· with methylacetylene (CH3CCH) and allene (H2CCCH2) were combined with RRKM-ME calculations of temperature- and pressure-dependent rate constants using the automated EStokTP software suite and kinetic modeling to assess the reactivity of C7H5· with closed-shell unsaturated hydrocarbons. Experimentally, the reactions were attempted in a chemical microreactor heated to 998 ± 10 K by preparing fulvenallenyl radicals via pyrolysis of trichloromethylbenzene (C7H5Cl3) and seeding the radicals in methylacetylene or allene carrier gas, with product identification by means of photoionization mass spectrometry. The measured photoionization efficiency curve of m/z = 128 was assigned to a linear combination of the reference curves of two C10H8 isomers, azulene (minor) and naphthalene (major), presumably resulting from the C7H5· plus C3H4 reactions. However, the calculations demonstrated that these reactions are too slow, and kinetic modeling of processes in the reactor allowed us to conclude that the observation of naphthalene and azulene is due to the C7H5· plus C3H3· reaction, where propargyl is produced by direct hydrogen atom abstraction by chlorine (Cl) atoms from allene or methylacetylene and Cl stem from the pyrolysis of C7H5Cl3. Modeling results under the copyrolysis conditions of toluene and methylacetylene in high-temperature shock tube experiments confirmed the prevalence of the fulvenallenyl reaction with propargyl over its reactions with C3H4 even when the concentrations of allene and methylacetylene largely exceed that of propargyl. Overall, the reactions of fulvenallenyl with both allene and methylacetylene were found to be noncompetitive in the formation of naphthalene and azulene thus attesting the inefficiency of the fulvenallenyl radical reactions with the prototype closed-shell hydrocarbon species. In the meantime, the new reaction pathways revealed, including H-assisted isomerizations between C10H8 isomers and decomposition reactions of various C10H9 isomers, emerge as relevant and are recommended for inclusion in combustion kinetic models for naphthalene formation.

2.
Faraday Discuss ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766758

ABSTRACT

The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (C14H10)-a three-ring, 14π benzenoid PAH-via a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (C6H5CC, X2A1) with benzene (C6H6) under single collision conditions. The dynamics involve a phenylethynyl radical addition to benzene without entrance barrier leading eventually to phenanthrene via indirect scattering dynamics through C14H11 intermediates. The barrierless nature of reaction allows rapid access to phenanthrene in low-temperature environments such as cold molecular clouds which can reach temperatures as low as 10 K. This mechanism constitutes a unique, low-temperature framework for the formation of PAHs as building blocks in molecular mass growth processes to carbonaceous nanostructures in extraterrestrial environments thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

3.
J Am Chem Soc ; 146(17): 12174-12184, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629886

ABSTRACT

Orthocarboxylic acids─organic molecules carrying three hydroxyl groups at the same carbon atom─have been distinguished as vital reactive intermediates by the atmospheric science and physical (organic) chemistry communities as transients in the atmospheric aerosol cycle. Predicted short lifetimes and their tendency to dehydrate to a carboxylic acid, free orthocarboxylic acids, signify one of the most elusive classes of organic reactive intermediates, with even the simplest representative methanetriol (CH(OH)3)─historically known as orthoformic acid─not previously been detected experimentally. Here, we report the first synthesis of the previously elusive methanetriol molecule in low-temperature mixed methanol (CH3OH) and molecular oxygen (O2) ices subjected to energetic irradiation. Supported by electronic structure calculations, methanetriol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies and the detection of photoionization fragments. The first synthesis and detection of methanetriol (CH(OH)3) reveals its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition. These findings progress our fundamental understanding of the chemistry and chemical bonding of methanetriol, hydroxyperoxymethane (CH3OOOH), and hydroxyperoxymethanol (CH2(OH)OOH), which are all prototype molecules in the oxidation chemistry of the atmosphere.

4.
Phys Chem Chem Phys ; 26(17): 13034-13048, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587503

ABSTRACT

The energetics and kinetics of phenalene and phenalenyl growth reactions were studied theoretically. Rate constants of phenalene and phenalenyl H-abstraction and C2H2 addition to the formed radicals were evaluated through quantum-chemical and rate-theory calculations. The obtained values, assigned to all π radicals, were tested in deterministic and kinetic Monte Carlo simulations of aromatics growth under conditions of laminar premixed flames. Kekulé and non-Kekulé structures of the polycyclic aromatic hydrocarbons (PAHs) evolving in the stochastic simulations were identified by on-the-fly constrained optimization. The numerical results demonstrated an increased PAH growth and qualitatively reproduced experimental observations of Homann and co-workers of non-decaying PAH concentrations with nearly equal abundances of even and odd carbon-atom PAHs. The analysis revealed that the PAH growth proceeds via alternating and sterically diverse acetylene and methyl HACA additions. The rapid and diverse spreading in the PAH population supports a nucleation model as PAH dimerization, assisted by the non-equilibrium phenomena, forming planar aromatics first and then transitioning to the PAH-PAH stacking with size.

5.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38567993

ABSTRACT

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Subject(s)
Mercury , Water Pollutants, Chemical , Mercury/analysis , Seawater/analysis , Seawater/chemistry , Isotopes/analysis , Water Pollutants, Chemical/analysis
6.
Appl Spectrosc ; 78(7): 667-679, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634156

ABSTRACT

Fentanyl and fentanyl analogs are the main cause of recent overdose deaths in the United States. The presence of fentanyl analogs in illicit drugs makes it difficult to estimate their potencies. This makes the detection and differentiation of fentanyl analogs critically significant. Surface-enhanced Raman spectroscopy (SERS) can differentiate structurally similar fentanyl analogs by yielding spectroscopic fingerprints for the detected molecules. In previous years, five fentanyl analogs, carfentanil, furanyl fentanyl, acetyl fentanyl, 4-fluoroisobutyryl fentanyl (4-FIBF), and cyclopropyl fentanyl (CPrF), gained popularity and were found in 76.4% of the fentanyl analogs trafficked. In this study, we focused on 4-FIBF, CPrF, and structurally similar fentanyl analogs. We developed methods to differentiate these fentanyl analogs using theoretical and experimental methods. To do this, a set of fentanyl analogs were examined using density functional theory (DFT) calculations. The DFT results obtained in this project permitted the assignment of spectral bands. These results were then compared with normal Raman and SERS techniques. Structurally similar fentanyl analogs show important differences in their spectra, and they have been visually differentiated from each other both theoretically and experimentally. Additional results using principal component analysis and soft independent modeling of class analogy show they can be distinguished using this technique. The limit of detection values for FIBF and CPrF were determined to be 0.35 ng/mL and 4.4 ng/mL, respectively, using SERS. Experimental results obtained in this project can be readily implemented in field applications and smaller laboratories, where inexpensive portable Raman spectrometers are often present and used in drug analysis.


Subject(s)
Density Functional Theory , Fentanyl , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Fentanyl/analogs & derivatives , Fentanyl/analysis , Fentanyl/chemistry , Illicit Drugs/analysis , Illicit Drugs/chemistry
7.
Phys Chem Chem Phys ; 26(7): 6448-6457, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38319693

ABSTRACT

Exploiting the crossed molecular beam technique, we studied the reaction of the 1-propynyl radical (CH3CC; X2A1) with 2-methylpropene (isobutylene; (CH3)2CCH2; X1A1) at a collision energy of 38 ± 3 kJ mol-1. The experimental results along with ab initio and statistical calculations revealed that the reaction has no entrance barrier and proceeds via indirect scattering dynamics involving C7H11 intermediates with lifetimes longer than their rotation period(s). The reaction is initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density at the C1 and/or C2 position in 2-methylpropene. Further, the C7H11 intermediate formed from the C1 addition either emits atomic hydrogen or undergoes isomerization via [1,2-H] shift from the CH3 or CH2 group prior to atomic hydrogen loss preferentially leading to 1,2,4-trimethylvinylacetylene (2-methylhex-2-en-4-yne) as the dominant product. The molecular structures of the collisional complexes promote hydrogen atom loss channels. RRKM results show that hydrogen elimination channels dominate in this reaction, with a branching ratio exceeding 70%. Since the reaction of the 1-propynyl radical with 2-methylpropene has no entrance barrier, is exoergic, and all transition states involved are located below the energy of the separated reactants, bimolecular collisions are feasible to form trimethylsubstituted 1,3-enyne (p1) via a single collision event even at temperatures as low as 10 K prevailing in cold molecular clouds such as G+0.693. The formation of trimethylsubstituted vinylacetylene could serve as the starting point of fundamental molecular mass growth processes leading to di- and trimethylsubstituted naphthalenes via the HAVA mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL