Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Diabetes Metab Disord ; 23(1): 1151-1162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932894

ABSTRACT

Background: Type I diabetes mellitus (T1DM) is a significant health challenge, especially for children, owing to its chronic autoimmune nature. Although the exact etiology of T1DM remains elusive, the interplay of genetic predisposition, immune responses, and environmental factors are postulated. Genetic factors control immune reactivity against ß-cells. Given the pivotal roles of CIITA and CLEC2D genes in modulating a variety of immune pathologies, we hypothesized that genetic variations in CIITA and CLEC2D genes may impact T1DM disease predisposition. This study was designed to explore the association between gene polymorphisms in CIITA (rs8048002) and CLEC2D (rs2114870) and type 1 diabetes (T1DM), with a focus on analyzing the functional consequence of those gene variants. Methods: The study enlisted 178 healthy controls and 148 individuals with type 1 diabetes (T1DM) from Suez Canal University Hospital. Genotyping for CIITA and CLEC2D was done using allelic-discrimination polymerase chain reaction (PCR). Levels of glycated hemoglobin (HbA1c) and lipid profiles were determined through automated analyzer, while fasting blood glucose and insulin serum levels were measured using the enzyme-linked immunosorbent assay (ELISA) technique. RegulomeDB was used to examine the regulatory functions of CIITA (rs8048002) and CLEC2D (rs2114870) gene variants. Results: Analysis of the genotype distribution of the CIITA rs8048002 polymorphism revealed a significantly higher prevalence of the rare C allele in T1DM patients compared to the control group (OR = 1.77; P = 0.001). Both the CIITA rs8048002 heterozygote TC genotype (OR = 1.93; P = 0.005) and the rare homozygote CC genotype (OR = 3.62; P = 0.006) were significantly more frequent in children with T1DM when compared to the control group. Conversely, the rare A allele of CLEC2D rs2114870 was found to be significantly less frequent in T1DM children relative to the control group (OR = 0.58; P = 0.002). The heterozygote GA genotype (OR = 0.61; P = 0.033) and the rare homozygote AA genotype (OR = 0.25; P = 0.004) were also significantly less frequent in T1DM patients compared to the control group. Both CIITA (rs8048002) and CLEC2D (rs2114870) gene variants were predicted to have regulatory functions, indicated by a RegulomeDB score of (1f) for each. Conclusion: The rare C allele of CIITA rs8048002 genetic variant was associated with an increased risk of developing T1DM, while the less common A allele of CLEC2D rs2114870 was associated with a reduced risk of T1DM. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01402-w.

2.
Biomed Pharmacother ; 176: 116823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834008

ABSTRACT

Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-ß1/SMAD pathway.


Subject(s)
Bleomycin , Plant Extracts , Pulmonary Fibrosis , Signal Transduction , Smad Proteins , Tandem Mass Spectrometry , Transforming Growth Factor beta1 , Ziziphus , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Male , Ziziphus/chemistry , Mice , Plant Extracts/pharmacology , Transforming Growth Factor beta1/metabolism , Smad Proteins/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Signal Transduction/drug effects , Lung/drug effects , Lung/pathology , Lung/metabolism , Metabolomics/methods , Anti-Inflammatory Agents/pharmacology , Liquid Chromatography-Mass Spectrometry
4.
Biochem Genet ; 62(1): 547-573, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37392242

ABSTRACT

Breast cancer is the most common type of cancer in Egyptian females. Polymorphisms in the angiogenesis pathway have been implicated previously in cancer risk and prognosis. The aim of the current study was to determine whether certain polymorphisms in the genes of vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial growth inhibitor (VEGI), and hypoxia-inducible factor-1α (HIF1A) associated with breast cancer development. The study included 154 breast cancer patients and 132 apparently healthy age-matched females as a control group. VEGFA rs25648 genotyping was performed using (ARMS) PCR technique; while VEGFR2 rs2071559, VEGI rs6478106, and HIF-1α rs11549465 were genotyped by the PCR-RFLP method. Serum levels of VEGF, VEGFR2, VEGI, and HIF1A proteins in breast cancer patients and controls were measured by ELISA. There was a significant association between the VEGFA rs25648 C allele and breast cancer risk (OR 2.5, 95% CI 1.7-3.6, p < 0.001). VEGFA rs25648 C/C genotype was statistically significantly higher in breast cancer patients vs. control (p < 0.001). Participants with the T/T and T/C VEGFR2 rs2071559 genotypes had 5.46 and 5 higher odds, respectively, of having breast cancer than those with the C/C genotype. For the VEGI rs6478106 polymorphism, there was a higher proportion of C allele in breast cancer patients vs. control (p = 0.003). Moreover, the C/C genotype of VEGI rs6478106 was statistically significantly higher in breast cancer patients vs. control (p = 0.001). There was no significant difference in genotypes and allele frequencies of HIF1A rs11549465 polymorphism between breast cancer cases and control individuals (p > 0.05). Serum levels of VEGFA, VEGI, and HIF1A were considerably greater in women with breast cancer than in the control (p < 0.001). In conclusion, the genetic variants VEGFA rs25648, VEGFR2 rs2071559, and VEGI rs6478106 revealed a significant association with increased breast cancer risk in Egyptian patients.


Subject(s)
Breast Neoplasms , Vascular Endothelial Growth Factor A , Female , Humans , Male , Blood Proteins/genetics , Breast Neoplasms/genetics , Case-Control Studies , Egypt , Genetic Predisposition to Disease , Genotype , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
5.
Life Sci ; 337: 122354, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38110076

ABSTRACT

AIM: Cardiac fibrosis is characterized by excessive accumulation of fibrous tissue, particularly collagens, in the myocardium. Accumulated fibrous tissue renders myocardium stiffer and reduces its contractility. Empagliflozin is an oral hypoglycemic agent with extra-diabetic functional profile toward maintaining cardiac functions. The present study aimed to examine protective effect of empagliflozin against an in-vivo model of cardiac fibrosis induced by isoprenaline and targeting TGF-ß/SMAD signaling as a possible pathway responsible for such effect. MAIN METHODS: Sixty animals were divided into six groups; the first was normal, and the second was treated with isoprenaline only (5 mg/kg/day I.P.) as a control. The third received pirfenidone (500 mg/kg/day P.O.), and the remaining groups received graded doses (5, 10, 20 mg/kg respectively) of empagliflozin for 14 days before fibrosis induction by isoprenaline (5 mg/kg/day) for 30 days. KEY FINDINGS: Isoprenaline increased cardiac enzymes, and cardiac tissues revealed elevated concentrations of transforming growth factor ß (TGF-ß1), monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor α (TNF-α), and c-jun N-terminal kinase (JNK) proteins. Expression of nuclear factor kappa B (NF-κB), alpha smooth muscle actin (α-SMA), collagens, suppressor of mothers against decapentaplegic (SMADs), connective tissue growth factor (CTGF), and fibronectin was upregulated. Empagliflozin improved the histological picture of heart tissue in comparison to fibrosis developed in controls, and protected against fibrosis through significant modulation of all mentioned parameters' concentrations and expressions. SIGNIFICANCE: Empagliflozin demonstrated a promising protective approach against biological model of cardiac fibrosis through an anti-fibrotic effect through targeting TGF-ß signaling pathways.


Subject(s)
Signal Transduction , Transforming Growth Factor beta , Rats , Animals , Transforming Growth Factor beta/metabolism , Isoproterenol/toxicity , Transforming Growth Factor beta1/metabolism , Fibrosis , Collagen/pharmacology
6.
Diagnostics (Basel) ; 13(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38066785

ABSTRACT

Polymorphisms in the 3' untranslated region of STAT3 mRNA can derange STAT3 gene expression via modifying the microRNA-binding site. This study aimed to examine the impact of STAT3 rs1053005 variation and miR-452-3p expression on osteoarthritis (OA) susceptibility and severity and the efficacy of intra-articular high-molecular-weight hyaluronic acid (HMW-HA) injection as a therapy option for knee OA. Two hundred and fifty-eight OA patients and 200 healthy controls were enrolled in the study. STAT3 genotyping and STAT3 and miR-452-3p expression were carried out using allelic-discrimination PCR and quantitative real-time PCR. Functional assessment and pain evaluation were performed for all patients. Eighty-three patients received HMW-HA injections, and multiple follow-up visits were performed. STAT3 mRNA was upregulated, and expression was positively associated with plasmin, TNF-α, MMP-3, and STAT3 serum levels, whereas miR-452-3p was downregulated and negatively associated with the previously mentioned parameters in OA patients. Osteoarthritis patients had a lower prevalence of the minor allele of the rs1053005 variant (p < 0.001). Plasmin, TNF, MMP-3, and STAT3 mRNA and protein levels were significantly decreased, and miR-452-3p expression was significantly increased in the GG genotype compared to AG and AA genotypes. HMW-HA injection improved OA patients' clinical scores with concomitant decreased STAT3 levels and enhanced expression of miR-452-3p. More efficient improvement was observed in rs1053005 AG + GG genotype carriers vs. AA genotype carriers. The G allele of STAT3 rs1053005 (A/G) polymorphism was associated with decreased OA susceptibility and severity and enhanced clinical response to HMW-HA injection, possibly via enhancing miR-452-3p binding and a subsequent decrease in STAT3 expression.

7.
Chem Biol Interact ; 383: 110672, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37591408

ABSTRACT

Disturbance in glucose metabolism was proposed to be a pathogenetic mechanism of breast cancer. Trimetazidine (TMZ) inhibits ß-oxidation of fatty acids through blocking the activity of 3-ketoacylCoA thiolase enzyme, leading to enhancement of glucose oxidation and metabolic respiration. The present study aimed to examine the cytotoxic effect of TMZ in both in vivo and in vitro models of breast cancer, focusing on its impact on the expression of some glycolytic enzymes and AKT signaling. The cytotoxic effect of TMZ was screened against breast (MCF-7) cancer cell line at different concentrations [0.01-100 µM]. In vivo, graded doses (10, 20, 30 mg/kg) of TMZ were tested against solid Ehrlich carcinoma (SEC) in mice. Tumor tissues were isolated for assessment of the expression of glucose transporter-1 (GLUT-1) and glycolytic enzymes by quantitative PCR. The protein expression of AKT and cellular myelocytomatosis (c-Myc) was determined by western blotting, while p53 expression was evaluated by immunohistochemistry. Molecular docking study of TMZ effect on AKT and c-Myc was performed using Auto-Dock Vina docking program. TMZ showed a cytotoxic action against MCF-7 cells, having IC50 value of 2.95 µM. In vivo, TMZ reduced tumor weight, downregulated the expression of glycolytic enzymes, suppressed AKT signaling, but increased p53 expression. Molecular docking and in silico studies proposed that TMZ is an AKT and c-Myc selective inhibitor. In conclusion, TMZ demonstrated a viable approach to suppress tumor proliferation in biological models of breast cancer.


Subject(s)
Carcinoma , Trimetazidine , Animals , Mice , Proto-Oncogene Proteins c-akt , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Molecular Docking Simulation , Tumor Suppressor Protein p53
8.
J Tradit Complement Med ; 13(4): 397-407, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37396158

ABSTRACT

Background and aim: Acacia nilotica (A. nilotica) is an imperative plant with many medicinal uses. The current study aimed to investigate the protective effects of the stem bark of A. nilotica and its fractions in a high fat diet (HFD) rat model. Experimental procedure: Seventy-two male albino rats were randomly divided into 9 groups, 8 rats per each. Group 1 was the normal control and received standard balanced diet. All the remaining groups were fed HFD for 8 weeks to induce obesity. Group 2 served as the HFD control group, group 3 received orlistat (5 mg/kg/day), groups 4 and 5 received total extract of A. nilotica stem bark (250 and 500 mg/kg). Groups 6 and 7 received A. nilotica ethyl acetate fraction (250 and 500 mg/kg), while groups 8 and 9 received butanol fraction (250 and 500 mg/kg). Results and conclusion: Both doses of the ethyl acetate fraction of the stem bark of A. nilotica significantly decreased the body weight, blood glucose, lipid profile and improved insulin sensitivity. Levels of MDA, leptin and inflammatory cytokines were significantly decreased by the ethyl acetate fraction while adiponectin and HDL-C were significantly increased relative to the HFD control group. Both doses of the ethyl acetate fraction significantly abolished HDF induced oxidative stress and normalized the values of antioxidant enzymes. Furthermore, metabolic profiling of the ethyl acetate fraction was performed by UHPLC/Q-TOF-MS. In conclusion, the ethyl acetate fraction of A. nilotica stem bark possessed antioxidant, anti-inflammatory and insulin sensitizing properties in HFD rat model.

9.
Pharmaceuticals (Basel) ; 16(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242536

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological illness characterized by memory loss and cognitive deterioration. Dapagliflozin was suggested to attenuate the memory impairment associated with AD; however, its mechanisms were not fully elucidated. This study aims to examine the possible mechanisms of the neuroprotective effects of dapagliflozin against aluminum chloride (AlCl3)-induced AD. Rats were distributed into four groups: group 1 received saline, group 2 received AlCl3 (70 mg/kg) daily for 9 weeks, and groups 3 and 4 were administered AlCl3 (70 mg/kg) daily for 5 weeks. Dapagliflozin (1 mg/kg) and dapagliflozin (5 mg/kg) were then given daily with AlCl3 for another 4 weeks. Two behavioral experiments were performed: the Morris Water Maze (MWM) and the Y-maze spontaneous alternation (Y-maze) task. Histopathological alterations in the brain, as well as changes in acetylcholinesterase (AChE) and amyloid ß (Aß) peptide activities and oxidative stress (OS) markers, were all evaluated. A western blot analysis was used for the detection of phosphorylated 5' AMP-activated protein kinase (p-AMPK), phosphorylated mammalian target of Rapamycin (p-mTOR) and heme oxygenase-1 (HO-1). Tissue samples were collected for the isolation of glucose transporters (GLUTs) and glycolytic enzymes using PCR analysis, and brain glucose levels were also measured. The current data demonstrate that dapagliflozin represents a possible approach to combat AlCl3-induced AD in rats through inhibiting oxidative stress, enhancing glucose metabolism and activating AMPK signaling.

10.
Biomedicines ; 11(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36979839

ABSTRACT

Major depressive disorder (MDD) is a common, complex disease with poorly understood pathogenesis. Disruption of glucose metabolism is implicated in the pathogenesis of depression. AMP-activated protein kinase (AMPK) has been shown to regulate the activity of several kinases, including pAKT, p38MAPK, and mTOR, which are important signaling pathways in the treatment of depression. This study tested the hypothesis that rosiglitazone (RGZ) has an antidepressant impact on dexamethasone (DEXA)-induced depression by analyzing the function of the pAKT/p38MAPK/mTOR pathway and NGF through regulation of AMPK. MDD-like pathology was induced by subcutaneous administration of DEXA (20 mg/kg) for 21 days in all groups except in the normal control group, which received saline. To investigate the possible mechanism of RGZ, the protein expression of pAMPK, pAKT, p38MAPK, and 4EBP1 as well as the levels of hexokinase, pyruvate kinase, and NGF were assessed in prefrontal cortex and hippocampal samples. The activities of pAMPK and NGF increased after treatment with RGZ. The administration of RGZ also decreased the activity of mTOR as well as downregulating the downstream signaling pathways pAKT, p38MAPK, and 4EBP1. Here, we show that RGZ exerts a potent inhibitory effect on the pAKT/p38MAPK/mTOR/4EBP1 pathway and causes activation of NGF in brain cells. This study has provided sufficient evidence of the potential for RGZ to ameliorate DEXA-induced depression. A new insight has been introduced into the critical role of NGF activation in brain cells in depression. These results suggest that RGZ is a promising antidepressant for the treatment of MDD.

11.
Plants (Basel) ; 11(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36079691

ABSTRACT

Despite the efficient anti-cancer capabilities of methotrexate (MTX), it may induce myelosuppression, liver dysfunction and testicular toxicity. The purpose of this investigation was to determine whether Marrubium alysson L. (M. alysson L.) methanolic extract and its polyphenol fraction could protect mouse testicles from MTX-induced damage. We also investigated the protective effects of three selected pure flavonoid components of M. alysson L. extract. Mice were divided into seven groups (n = 8): (1) normal control, (2) MTX, (3) Methanolic extract + MTX, (4) Polyphenolic fraction + MTX, (5) Kaempferol + MTX, (6) Quercetin + MTX, and (7) Rutin + MTX. Pre-treatment of mice with the methanolic extract, the polyphenolic fraction of M. alysson L. and the selected pure compounds ameliorated the testicular histopathological damage and induced a significant increase in the serum testosterone level and testicular antioxidant enzymes along with a remarkable decline in the malondialdehyde (MDA) level versus MTX alone. Significant down-regulation of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), p53 and miRNA-29a testicular expression was also observed in all the protected groups. Notably, the polyphenolic fraction of M. alysson L. displayed a more pronounced decline in the testicular levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and MDA, with higher testosterone levels relative to the methanolic extract. Further improvements in the Johnsen score, histopathological results and all biochemical assays were achieved by pre-treatment with the three selected pure compounds kaempferol, quercetin and rutin. In conclusion, M. alysson L. could protect against MTX-induced testicular injury by its antioxidant, anti-inflammatory, antiapoptotic activities and through the regulation of the miRNA-29a testicular expression. The present study also included chemical profiling of M. alysson L. extract, which was accomplished by LC-ESI-TOF-MS/MS analysis. Forty compounds were provisionally assigned, comprising twenty compounds discovered in the positive mode and seventeen detected in the negative mode.

12.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145334

ABSTRACT

Disturbance of glucose metabolism, nerve growth factor (NGF) and m-TOR signaling have been associated with the pathophysiology of epilepsy. Pioglitazone (PGZ) is an anti-diabetic drug that shows a protective effect in neurodegenerative diseases including epilepsy; however, its exact mechanism is not fully elucidated. The present study aimed to investigate the potential neuroprotective effect of PGZ in pentylenetetrazole (PTZ) kindled seizure in mice. Swiss male albino mice were randomly distributed into four groups, each having six mice. Group 1 was considered the control. Epilepsy was induced by PTZ (35 mg/kg i.p.) thrice a week for a total of 15 injections in all other groups. Group 2 was considered the untreated PTZ group while Group 3 and Group 4 were treated by PGZ prior to PTZ injection at two dose levels (5 and 10 mg/kg p.o., respectively). Seizure activity was evaluated after each PTZ injection according to the Fischer and Kittner scoring system. At the end of the experiment, animals were sacrificed under deep anesthesia and the hippocampus was isolated for analysis of glucose transporters by RT-PCR, nerve growth factor (NGF) by ELISA and mTOR by western blotting, in addition to histopathological investigation. The PTZ-treated group showed a significant rise in seizure score, NGF and m-TOR hyperactivation, along with histological abnormalities compared to the control group. Treatment with PGZ demonstrated a significant decrease in NGF, seizure score, m-TOR, GLUT-1 and GLUT-3 in comparison to the PTZ group. In addition, improvement of histological features was observed in both PGZ treated groups. These findings suggest that PGZ provides its neuroprotective effect through modulating m-TOR signaling, glucose metabolism and NGF levels.

13.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142712

ABSTRACT

Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1ß, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.


Subject(s)
MicroRNAs , Saponins , Zygophyllum , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Dimethyl Sulfoxide/pharmacology , Interleukin-6/metabolism , Malondialdehyde/metabolism , Methotrexate/pharmacology , MicroRNAs/metabolism , NF-kappa B/metabolism , Oxidative Stress , Plant Extracts/chemistry , RNA, Messenger/metabolism , Rutin/metabolism , Rutin/pharmacology , Saponins/metabolism , Saponins/pharmacology , Superoxide Dismutase/metabolism , Testis/metabolism , Testosterone/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Water/metabolism , bcl-2-Associated X Protein/metabolism
14.
Biomedicines ; 10(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36009533

ABSTRACT

Cichorium endivia L. (Asteraceae) is a wide edible plant that grows in the Mediterranean region. In this study, a phytochemical investigation of C. endivia L. ethanolic extract led to the isolation of stigmasterol (1), ursolic acid (2), ß-amyrin (3), azelaic acid (4), vanillic acid (5), (6S, 7E)-6-hydroxy-4,7-megastigmadien-3,9-dione (S(+)-dehydrovomifoliol) (6), 4-hydroxy phenyl acetic acid (7), vomifoliol (8), ferulic acid (9), protocatechuic acid (10), kaempferol (11), p. coumaric acid (12), and luteolin (13). In addition, the total phenolic content as well as the in vitro antioxidant activity of C. endivia L. extract were estimated. Moreover, we inspected the potential gonado-protective effect of C. endivia crude extract, its phenolic fraction, and the isolated coumaric, vanillic, and ferulic acids against methotrexate (MTX)-induced testicular injury in mice. There were seven groups: normal control, MTX control, MTX + C. endivia crude extract, MTX + C. endivia phenolic fraction, MTX + isolated coumaric acid, MTX + isolated vanillic acid, and MTX + isolated ferulic acid. MTX was given by i.p. injection of a 20 mg/kg single dose. The crude extract and phenolic fraction were given with a dose of 100 mg/kg/day, whereas the compounds were given at a dose of 10 mg/kg/day. A histopathological examination was done. The testosterone level was detected in serum together with the testicular content of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x protein (Bax), p53, and miR-29a. C. endivia crude extract, the phenolic fraction, and the isolated compounds showed significant elevation in their levels of testosterone, CAT, SOD, Bcl-2 with a significant decrease in their levels of MDA, TNF-α, IL-1ß, IL-6, NF-κB, Bax, P53, and miR-29a compared to those of the MTX control group. In conclusion, C. endivia mitigated MTX-induced germ cell toxicity via anti-inflammatory, antioxidant, and antiapoptotic effects.

15.
J Diabetes Metab Disord ; 21(1): 557-565, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673475

ABSTRACT

Purpose: Diabetic peripheral neuropathy can injure the hand median nerve and cause extensive nerve damage. PKC and ALR are associated with progression of diabetic complications. We hypothesized a genetic association between the ALR polymorphisms (-106C → T/-12C → G) and elevated serum PKC-δ levels in diabetic neuropathy and its adverse effects on handwriting in Egyptian population. Methods: One hundred DPN were compared with 100 DP and 100 healthy volunteers. ALR -106C → T/-12C → G variants were studied using the PCR-RFLP method. A routine set of standard laboratory markers was determined. Serum PKC-δ concentration was determined by ELISA. Logistic regression analysis and areas under the receiver characteristic curves (AUCs) were evaluated to investigate the predictors of diabetic neuropathy. Arabic handwriting was analyzed based on the recognition of functional features, word shape, and ascending/descending parts of letters. Results: Individuals carrying ALR-106C → C and -12G → G had a significantly higher risk of developing diabetic neuropathy than individuals with -106C → T and -12C → G genotypes (P = 0.01, P = 0.02). Carriers of the (-106C → T) CC and (-12C → G) GG genotypes had significantly increased serum levels of PKC-δ, FBG, TC, and LDL-c. PKC- δ serum levels were significantly correlated with glycemic and lipid indicators (P < 0.001). PKC-δ is a significant predictor of diabetes with or without neuropathy at a cutoff value of 16.6, sensitivity was 89%, and specificity 100%. All DPN showed complete deterioration of handwriting after the onset of diabetic neuropathy. Conclusion: The genetic variants ALR-106C → C / -12G → G and PKC-δ in serum may help in the detection and treatment of diabetic neuropathy in Egyptian population before writing performance is affected.

16.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35624682

ABSTRACT

Sonchus cornutus (Asteraceae) is a wild. edible plant that represents a plentiful source of polyphenolic compounds. For the first time, the metabolic analysis profiling demonstrated the presence of anthocyanidin glycosides, coumarins, flavonoids and their corresponding glycosides, and phenolic acids. The total phenolic compounds were determined to be 206.28 ± 14.64 mg gallic acid equivalent/gm, while flavonoids were determined to be 45.56 ± 1.78 mg quercetin equivalent/gm. The crude extract of S. cornutus exhibited a significant 1,1-diphenyl-2-picrylhydrazyl free radical scavenging effect with half-maximal inhibitory concentration (IC50) of 16.10 ± 2.14 µg/mL compared to ascorbic acid as a standard (10.64 ± 0.82 µg/mL). In vitro total antioxidant capacity and ferric reducing power capacity assays revealed a promising reducing potential of S. cornutus extract. Therefore, the possible protective effects of S. cornutus against hepatic and renal toxicity induced by cisplatin in experimental mice were investigated. S. cornutus significantly ameliorated the cisplatin-induced disturbances in liver and kidney functions and oxidative stress, decreased MDA, ROS, and NO levels, and restored CAT and SOD activities. Besides, it reversed cisplatin-driven upregulation in inflammatory markers, including iNOS, IL-6, and IL-1ß levels and NF-κB and TNF-α expression, and elevated anti-inflammatory IL-10 levels and Nrf2 expression. Additionally, the extract mitigated cisplatin alteration in apoptotic (Bax and caspase-3) and anti-apoptotic (Bcl-2) proteins. Interestingly, hepatic, and renal histopathology revealed the protective impacts of S. cornutus against cisplatin-induced pathological changes. Our findings guarantee a protective effect of S. cornutus against cisplatin-induced hepatic and renal damage via modulating oxidative stress, inflammation, and apoptotic pathways.

17.
Biomedicines ; 10(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35625905

ABSTRACT

The Red Sea marine fungus Penicillium chrysogenum (Family: Ascomycota) comprises a panel of chemically diverse natural metabolites. A meleagrin alkaloid was isolated from deep-sediment-derived P. chrysogenum Strain S003 and has been reported to exert antibacterial and cytotoxic activities. The present study aimed to explore the therapeutic potential of meleagrin on pulmonary fibrosis. Lung fibrosis was induced in mice by a single intratracheal instillation of 2.5 mg/kg bleomycin. Mice were given 5 mg/kg meleagrin daily either for 3 weeks after bleomycin administration in the treatment group or 2 weeks before and 3 weeks after bleomycin administration in the protection group. Bleomycin triggered excessive ROS production, inflammatory infiltration, collagen overproduction and fibrosis. Bleomycin-induced pulmonary fibrosis was attenuated by meleagrin. Meleagrin was noted to restore the oxidant-antioxidant balance, as evidenced by lower MDA contents and higher levels of SOD and catalase activities and GSH content compared to the bleomycin group. Meleagrin also activated the Nrf2/HO-1 antioxidant signaling pathway and inhibited TLR4 and NF-κB gene expression, with a subsequent decreased release of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ). Additionally, meleagrin inhibited bleomycin-induced apoptosis by abating the activities of pro-apoptotic proteins Bax and caspase-3 while elevating Bcl2. Furthermore, it suppressed the gene expression of α-SMA, TGF-ß1, Smad-2, type I collagen and MMP-9, with a concomitant decrease in the protein levels of TGF-ß1, α-SMA, phosphorylated Smad-2, MMP-9, elastin and fibronectin. This study revealed that meleagrin's protective effects against bleomycin-induced pulmonary fibrosis are attributed to its antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic properties. Notably, the use of meleagrin as a protective agent against bleomycin-induced lung fibrosis was more efficient than its use as a treatment agent.

18.
Vet World ; 15(1): 65-75, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35369578

ABSTRACT

Background and Aim: Gold nanorods (AuNRs) have gained much attention recent years due to their promising optical and chemical properties and are hence used in applied research and industrial nanotechnology. This study was designed to investigate the effect of gold nanoparticle shape (Gold nanorods vs. gold nanosphere) on immune response in rabbit. Materials and Methods: Thirty New Zealand white rabbits were divided into six groups (n=5 rabbits). The first group is the control negative received an intravenous (IV) injection of normal saline 0.9%; the second group (vaccinated) is the control positive, and the other four groups were vaccinated and received a single-dose or repeated five consecutive IV doses of 300 mg/kg body weight 50 nm AuNRs or 50 nm gold nanosphere (50 nm AuNSs) dissolved in ultrapure water. Blood and serum were collected for the hematological and biochemical analysis. Results: White blood cells (WBCs) count, lymphocytes, monocytes, eosinophils, and basophils showed significantly (p<0.05) higher values with the repeated-dose AuNRs. g-globulin levels showed a significant difference after 15 days in the single-dose AuNSs. Single-dose AuNSs significantly (p<0.05) increased the immunoglobulin G (IgG) and significantly (p<0.05) decreased the tumor necrosis factor-alpha. In addition, it elicited a significant (p<0.05) decrease in the malondialdehyde levels and a significant (p<0.05) increase of the superoxide dismutase, glutathione peroxidase, and catalase levels. Moreover, evoked red blood cells count, mean corpuscular volume, and mean corpuscular hemoglobin were significantly (p<0.05) lower than the control group. The platelet count, lysozymes, and nitric oxide were significantly (p<0.05) higher in repeated-dose AuNRs. Conclusion: The effect of AuNPs is shape and dose-dependent. The repeated 5 days IV 50 nm AuNRs doses over 15 days showed a significant antioxidant effect, with no considerable toxicity or vascular reactions.

19.
Biochem Genet ; 60(6): 1986-1999, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35190930

ABSTRACT

The 14-3-3 Eta (14-3-3 η) biomarker platform is a relatively recent discovery with the potential to significantly address the diagnosis and prognosis of rheumatoid arthritis (RA) disease. Hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) have been implicated in inflammatory mechanisms in RA. We hypothesized a molecular association of the coding YWHAH gene and its expressed protein 14-3-3 η with hypoxia and angiogenesis in RA. One hundred healthy subjects and 100 RA patients were enrolled in the study. YWHAH gene expression was determined using quantitative PCR, and its gene polymorphism rs2858750 was assessed by Taqman genotyping assay. Serum levels of 14-3-3 η, HIF-1α, and VEGF were measured using the ELISA technique, and clinical parameters were routinely examined. In RA patients, significant positive correlations were found between 14-3-3 η, HIF-1α (r = 0.84), and VEGF (r = 0.85). YWHAH gene expression was upregulated 10.8 fold (CI 95% 10.1-11.5) in RA patients and significantly correlated with all disease activity parameters, ACPA, and levels of 14-3-3 η, HIF-1α, and VEGF. RA patients showed a higher frequency of YWHAH rs2858750 A allele than healthy subjects (p = 0.02). The risk A allele carriers showed higher disease activity parameters, ACPA, YWHAH gene expression, and increased serum levels of 14-3-3 η (p < 0.001), HIF-1α (p = 0.002), and VEGF (p = 0.001) than the G allele. Serum 14-3-3 η and its rs2858750 genetic variant are associated with increased hypoxia and angiogenesis in RA and activity, and severity of the disease.


Subject(s)
14-3-3 Proteins , Arthritis, Rheumatoid , Vascular Endothelial Growth Factor A , Humans , 14-3-3 Proteins/genetics , Arthritis, Rheumatoid/genetics , Egypt , Hypoxia , Vascular Endothelial Growth Factor A/genetics
20.
Mar Drugs ; 20(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35049918

ABSTRACT

Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids-docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6-as well as three ceramides-A (1), B (2), and C (3)-with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Ceramides/pharmacology , Rhodophyta , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Aquatic Organisms , Ascites/pathology , Carcinoma, Ehrlich Tumor/pathology , Cell Line, Tumor/drug effects , Ceramides/chemistry , Ceramides/therapeutic use , Disease Models, Animal , Humans , Indian Ocean , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...