Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Article En | MEDLINE | ID: mdl-38592459

INTRODUCTION: Hypokinetic dysarthria (HD) is a common motor speech symptom of Parkinson's disease (PD) which does not respond well to PD treatments. We investigated short-term effects of transcranial direct current stimulation (tDCS) on HD in PD using acoustic analysis of speech. Based on our previous studies we focused on stimulation of the right superior temporal gyrus (STG) - an auditory feedback area. METHODS: In 14 PD patients with HD, we applied anodal, cathodal and sham tDCS to the right STG using a cross-over design. A protocol consisting of speech tasks was performed prior to and immediately after each stimulation session. Linear mixed models were used for the evaluation of the effects of each stimulation condition on the relative change of acoustic parameters. We also performed a simulation of the mean electric field induced by tDCS. RESULTS: Linear mixed model showed a statistically significant effect of the stimulation condition on the relative change of median duration of silences longer than 50 ms (p = 0.015). The relative change after the anodal stimulation (mean = -5.9) was significantly lower as compared to the relative change after the sham stimulation (mean = 12.8), p = 0.014. We also found a correlation between the mean electric field magnitude in the right STG and improvement of articulation precision after anodal tDCS (R = 0.637; p = 0.019). CONCLUSIONS: The exploratory study showed that anodal tDCS applied over the auditory feedback area may lead to shorter pauses in a speech of PD patients.

2.
J Neural Transm (Vienna) ; 131(2): 181-187, 2024 Feb.
Article En | MEDLINE | ID: mdl-37943390

Hypokinetic dysarthria (HD) is a difficult-to-treat symptom affecting quality of life in patients with Parkinson's disease (PD). Levodopa may partially alleviate some symptoms of HD in PD, but the neural correlates of these effects are not fully understood. The aim of our study was to identify neural mechanisms by which levodopa affects articulation and prosody in patients with PD. Altogether 20 PD patients participated in a task fMRI study (overt sentence reading). Using a single dose of levodopa after an overnight withdrawal of dopaminergic medication, levodopa-induced BOLD signal changes within the articulatory pathway (in regions of interest; ROIs) were studied. We also correlated levodopa-induced BOLD signal changes with the changes in acoustic parameters of speech. We observed no significant changes in acoustic parameters due to acute levodopa administration. After levodopa administration as compared to the OFF dopaminergic condition, patients showed task-induced BOLD signal decreases in the left ventral thalamus (p = 0.0033). The changes in thalamic activation were associated with changes in pitch variation (R = 0.67, p = 0.006), while the changes in caudate nucleus activation were related to changes in the second formant variability which evaluates precise articulation (R = 0.70, p = 0.003). The results are in line with the notion that levodopa does not have a major impact on HD in PD, but it may induce neural changes within the basal ganglia circuitries that are related to changes in speech prosody and articulation.


Levodopa , Parkinson Disease , Humans , Levodopa/adverse effects , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , Speech/physiology , Magnetic Resonance Imaging/methods , Quality of Life , Speech Disorders/diagnostic imaging , Speech Disorders/etiology , Dysarthria/etiology , Dysarthria/complications , Antiparkinson Agents/adverse effects
3.
Int J Neural Syst ; 33(6): 2350028, 2023 May.
Article En | MEDLINE | ID: mdl-37118909

Parkinson's disease (PD) is a neurodegenerative condition with constantly increasing prevalence rates, affecting strongly life quality in terms of neuromotor and cognitive performance. PD symptoms include voice and speech alterations, known as hypokinetic dysarthria (HD). Unstable phonation is one of the manifestations of HD. Repetitive transcranial magnetic stimulation (rTMS) is a rehabilitative treatment thathas been shown to improve some motor and non-motor symptoms of persons with PD (PwP). This study analyzed the phonation functional behavior of 18 participants (13 males, 5 females) with PD diagnosis before (one pre-stimulus) and after (four post-stimulus) evaluation sessions of rTMS treatment, to assess the extent of changes in their phonation stability. Participants were randomized 1:1 to receive either rTMS or sham stimulation. Voice recordings of a sustained vowel [a:] taken immediately before and after the treatment, and at follow-up evaluation sessions (immediately after, at six, ten, and fourteen weeks after the baseline assessment) were processed by inverse filtering to estimate a biomechanical correlate of vocal fold tension. This estimate was further band-pass filtered into EEG-related frequency bands. Log-likelihood ratios (LLRs) between pre- and post-stimulus amplitude distributions of each frequency band showed significant differences in five cases actively stimulated. Seven cases submitted to the sham protocol did not show relevant improvements in phonation instability. Conversely, four active cases did not show phonation improvements, whereas two sham cases did. The study provides early preliminary insights into the capability of phonation quality assessment by monitoring neuromechanical activity from acoustic signals in frequency bands aligned with EEG ones.


Parkinson Disease , Male , Female , Humans , Transcranial Magnetic Stimulation/methods , Pilot Projects , Phonation , Dysarthria , Electroencephalography
4.
Front Neuroinform ; 16: 877139, 2022.
Article En | MEDLINE | ID: mdl-35722168

Parkinson's disease dysgraphia (PDYS), one of the earliest signs of Parkinson's disease (PD), has been researched as a promising biomarker of PD and as the target of a noninvasive and inexpensive approach to monitoring the progress of the disease. However, although several approaches to supportive PDYS diagnosis have been proposed (mainly based on handcrafted features (HF) extracted from online handwriting or the utilization of deep neural networks), it remains unclear which approach provides the highest discrimination power and how these approaches can be transferred between different datasets and languages. This study aims to compare classification performance based on two types of features: features automatically extracted by a pretrained convolutional neural network (CNN) and HF designed by human experts. Both approaches are evaluated on a multilingual dataset collected from 143 PD patients and 151 healthy controls in the Czech Republic, United States, Colombia, and Hungary. The subjects performed the spiral drawing task (SDT; a language-independent task) and the sentence writing task (SWT; a language-dependent task). Models based on logistic regression and gradient boosting were trained in several scenarios, specifically single language (SL), leave one language out (LOLO), and all languages combined (ALC). We found that the HF slightly outperformed the CNN-extracted features in all considered evaluation scenarios for the SWT. In detail, the following balanced accuracy (BACC) scores were achieved: SL-0.65 (HF), 0.58 (CNN); LOLO-0.65 (HF), 0.57 (CNN); and ALC-0.69 (HF), 0.66 (CNN). However, in the case of the SDT, features extracted by a CNN provided competitive results: SL-0.66 (HF), 0.62 (CNN); LOLO-0.56 (HF), 0.54 (CNN); and ALC-0.60 (HF), 0.60 (CNN). In summary, regarding the SWT, the HF outperformed the CNN-extracted features over 6% (mean BACC of 0.66 for HF, and 0.60 for CNN). In the case of the SDT, both feature sets provided almost identical classification performance (mean BACC of 0.60 for HF, and 0.58 for CNN).

5.
Parkinsonism Relat Disord ; 94: 45-48, 2022 01.
Article En | MEDLINE | ID: mdl-34883358

INTRODUCTION: Impaired copy of intersecting pentagons from the Mini-Mental State Examination (MMSE), has been used to assess dementia in Parkinson's disease (PD). We used a digitizing tablet during the pentagon copying test (PCT) as a potential tool for evaluating early cognitive deficits in PD without major cognitive impairment. We also aimed to uncover the neural correlates of the identified parameters using whole-brain magnetic resonance imaging (MRI). METHODS: We enrolled 27 patients with PD without major cognitive impairment and 25 age-matched healthy controls (HC). We focused on drawing parameters using a digitizing tablet. Parameters with between-group differences were correlated with cognitive outcomes and were used as covariates in the whole-brain voxel-wise analysis using voxel-based morphometry; familywise error (FWE) threshold p < 0.001. RESULTS: PD patients differed from HC in attention domain z-scores (p < 0.0001). In terms of tablet parameters, the groups differed in Shannon entropy (horizontal in-air, p = 0.003), which quantifies the movements between two strokes. In PD, a correlation was found between the median of Shannon entropy (horizontal in-air) and attention z-scores (R = -0.55, p = 0.006). The VBM revealed an association between our drawing parameter of interest and gray matter (GM) volume variability in the right superior parietal lobe (SPL). CONCLUSION: Using a digitizing tablet during the PCT, we identified a novel entropy-based parameter that differed between the nondemented PD and HC groups. This in-air parameter correlated with the level of attention and was linked to GM volume variability of the region engaged in spatial attention.


Cognitive Dysfunction , Parkinson Disease , Entropy , Gray Matter , Humans , Magnetic Resonance Imaging/methods , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/psychology
7.
Brain Stimul ; 14(3): 571-578, 2021.
Article En | MEDLINE | ID: mdl-33781956

BACKGROUND: Hypokinetic dysarthria is a common but difficult-to-treat symptom of Parkinson's disease (PD). OBJECTIVES: We evaluated the long-term effects of multiple-session repetitive transcranial magnetic stimulation on hypokinetic dysarthria in PD. Neural mechanisms of stimulation were assessed by functional MRI. METHODS: A randomized parallel-group sham stimulation-controlled design was used. Patients were randomly assigned to ten sessions (2 weeks) of real (1 Hz) or sham stimulation over the right superior temporal gyrus. Stimulation effects were evaluated at weeks 2, 6, and 10 after the baseline assessment. Articulation, prosody, and speech intelligibility were quantified by speech therapist using a validated tool (Phonetics score of the Dysarthric Profile). Activations of the speech network regions and intrinsic connectivity were assessed using 3T MRI. Linear mixed models and post-hoc tests were utilized for data analyses. RESULTS: Altogether 33 PD patients completed the study (20 in the real stimulation group and 13 in the sham stimulation group). Linear mixed models revealed significant effects of time (F(3, 88.1) = 22.7, p < 0.001) and time-by-group interactions: F(3, 88.0) = 2.8, p = 0.040) for the Phonetics score. Real as compared to sham stimulation led to activation increases in the orofacial sensorimotor cortex and caudate nucleus and to increased intrinsic connectivity of these regions with the stimulated area. CONCLUSIONS: This is the first study to show the long-term treatment effects of non-invasive brain stimulation for hypokinetic dysarthria in PD. Neural mechanisms of the changes are discussed.


Parkinson Disease , Dysarthria , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Speech Intelligibility , Temporal Lobe , Transcranial Magnetic Stimulation
8.
Parkinsonism Relat Disord ; 84: 122-128, 2021 03.
Article En | MEDLINE | ID: mdl-33609963

INTRODUCTION: Hypokinetic dysarthria (HD) is common in Parkinson's disease (PD). Our objective was to evaluate articulatory networks and their reorganization due to PD pathology in individuals without overt speech impairment using a multimodal MRI protocol and acoustic analysis of speech. METHODS: A total of 34 PD patients with no subjective HD complaints and 25 age-matched healthy controls (HC) underwent speech task recordings, structural MRI, and reading task-induced and resting-state fMRI. Grey matter probability maps, task-induced activations, and resting-state functional connectivity within the regions engaged in speech production (ROIs) were assessed and compared between groups. Correlation with acoustic parameters was also performed. RESULTS: PD patients as compared Tto HC displayed temporal decreases in speech loudness which were related to BOLD signal increases in the right-sided regions of the dorsal language pathway/articulatory network. Among those regions, activation of the right anterior cingulate was increased in PD as compared to HC. We also found bilateral posterior superior temporal gyrus (STG) GM loss in PD as compared to HC that was strongly associated with diadochokinetic (DDK) irregularity in the PD group. Task-induced activations of the left STG were increased in PD as compared to HC and were related to the DDK rate control. CONCLUSIONS: The results provide insight into the neural correlates of speech production control and distinct articulatory network reorganization in PD apparent already in patients without subjective speech impairment.


Connectome , Dysarthria , Gray Matter , Magnetic Resonance Imaging , Nerve Net , Parkinson Disease , Speech Acoustics , Temporal Lobe , Aged , Aged, 80 and over , Dysarthria/diagnosis , Dysarthria/etiology , Dysarthria/pathology , Dysarthria/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Male , Multimodal Imaging , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Temporal Lobe/physiopathology
9.
Eur J Neurol ; 28(5): 1463-1469, 2021 05.
Article En | MEDLINE | ID: mdl-33527581

BACKGROUND AND PURPOSE: We aimed to confirm the Mozart effect in epileptic patients using intracerebral electroencephalography recordings and the hypothesis that the reduction of epileptiform discharges (EDs) can be explained by the music's acoustic properties. METHODS: Eighteen epilepsy surgery candidates were implanted with depth electrodes in the temporal medial and lateral cortex. Patients listened to the first movement of Mozart's Sonata for Two Pianos K. 448 and to the first movement of Haydn's Symphony No. 94. Musical features from each composition with respect to rhythm, melody, and harmony were analyzed. RESULTS: Epileptiform discharges in intracerebral electroencephalography were reduced by Mozart's music. Listening to Haydn's music led to reduced EDs only in women; in men, the EDs increased. The acoustic analysis revealed that nondissonant music with a harmonic spectrum and decreasing tempo with significant high-frequency parts has a reducing effect on EDs in men. To reduce EDs in women, the music should additionally be gradually less dynamic in terms of loudness. Finally, we were able to demonstrate that these acoustic characteristics are more dominant in Mozart's music than in Haydn's music. CONCLUSIONS: We confirmed the reduction of intracerebral EDs while listening to classical music. An analysis of the musical features revealed that the acoustic characteristics of music are responsible for suppressing brain epileptic activity. Based on our study, we suggest studying the use of musical pieces with well-defined acoustic properties as an alternative noninvasive method to reduce epileptic activity in patients with epilepsy.


Epilepsy , Music Therapy , Music , Acoustic Stimulation , Acoustics , Electroencephalography , Female , Humans , Male
10.
Parkinsonism Relat Disord ; 81: 96-102, 2020 12.
Article En | MEDLINE | ID: mdl-33120076

BACKGROUND: Diffusion kurtosis imaging has been applied to evaluate white matter and basal ganglia microstructure in mixed Parkinson's disease (PD) groups with inconclusive results. OBJECTIVES: To evaluate specific patterns of kurtosis changes in PD and to assess the utility of diffusion imaging in differentiating between healthy subjects and cognitively normal PD, and between PD with and without mild cognitive impairment. METHODS: Diffusion scans were obtained in 92 participants using 3T MRI. Differences in white matter were tested by tract-based spatial statistics. Gray matter was evaluated in basal ganglia, thalamus, hippocampus, and motor and premotor cortices. Brain atrophy was also assessed. Multivariate logistic regression was used to identify a combination of diffusion parameters with the highest discrimination power between groups. RESULTS: Diffusion kurtosis metrics showed a significant increase in substantia nigra (p = 0.037, Hedges' g = 0.89), premotor (p = 0.009, Hedges' g = 0.85) and motor (p = 0.033, Hedges' g = 0.87) cortices in PD with normal cognition compared to healthy participants. Combined diffusion markers in gray matter reached 81% accuracy in differentiating between both groups. Significant white matter microstructural changes, and kurtosis decreases in the cortex were present in cognitively impaired versus cognitively normal PD. Diffusion parameters from white and gray matter differentiated between both PD phenotypes with 78% accuracy. CONCLUSIONS: Increased kurtosis in gray matter structures in cognitively normal PD reflects increased hindrance to water diffusion caused probably by alpha-synuclein-related microstructural changes. In cognitively impaired PD, the changes are mostly driven by decreased white matter integrity. Our results support the utility of diffusion kurtosis imaging for PD diagnostics.


Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Parkinson Disease/diagnostic imaging , Aged , Atrophy , Basal Ganglia/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Gray Matter/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Logistic Models , Male , Middle Aged , Models, Statistical , Motor Cortex/diagnostic imaging , Multivariate Analysis , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Thalamus/diagnostic imaging , White Matter/diagnostic imaging
11.
Int J Neural Syst ; 30(10): 2050058, 2020 Oct.
Article En | MEDLINE | ID: mdl-32880202

Speech is controlled by axial neuromotor systems, therefore, it is highly sensitive to the effects of neurodegenerative illnesses such as Parkinson's Disease (PD). Patients suffering from PD present important alterations in speech, which are manifested in phonation, articulation, prosody, and fluency. These alterations may be evaluated using statistical methods on features obtained from glottal, spectral, cepstral, or fractal descriptions of speech. This work introduces an evaluation paradigm based on Information Theory (IT) to differentiate the effects of PD and aging on glottal amplitude distributions. The study is conducted on a database including 48 PD patients (24 males, 24 females), 48 age-matched healthy controls (HC, 24 males, 24 females), and 48 mid-age normative subjects (NS, 24 males, 24 females). It may be concluded from the study that Hierarchical Clustering (HiCl) methods produce a clear separation between the phonation of PD patients from NS subjects (accuracy of 89.6% for both male and female subsets), but the separation between PD patients and HC subjects is less efficient (accuracy of 75.0% for the male subset and 70.8% for the female subset). Conversely, using feature selection and Support Vector Machine (SVM) classification, the differentiation between PD and HC is substantially improved (accuracy of 94.8% for the male subset and 92.8% for the female subset). This improvement was mainly boosted by feature selection, at a cost of information and generalization losses. The results point to the possibility that speech deterioration may affect HC phonation with aging, reducing its difference to PD phonation.


Aging/physiology , Parkinson Disease/physiopathology , Phonation/physiology , Speech Disorders/physiopathology , Support Vector Machine , Aged , Diagnosis, Differential , Female , Humans , Male , Parkinson Disease/complications , Speech Acoustics , Speech Disorders/etiology
12.
Front Psychol ; 10: 2937, 2019.
Article En | MEDLINE | ID: mdl-32038361

Dysgraphia (D) is a complex specific learning disorder with a prevalence of up to 30%, which is linked with handwriting issues. The factors recognized for assessing these issues are legibility and performance time. Two questionnaires, the Handwriting Proficiency Screening Questionnaire (HPSQ) for teachers and its modification for children (HPSQ-C), were established as quick and valid screening tools along with a third factor - emotional and physical well-being. Until now, in the Czechia, there has been no validated screening tool for D diagnosis. A study was conducted on a set of 294 children from 3rd and 4th year of primary school (132 girls/162 boys; M age 8.96 ± 0.73) and 21 teachers who spent most of their time with them. Confirmatory factor analysis based on the theoretical background showed poor fit for HPSQ [χ2(32) = 115.07, p < 0.001; comparative fit index (CFI) = 0.95; Tucker-Lewis index (TLI) = 0.93; root mean square error of approximation (RMSEA) = 0.09; standard root mean square residual (SRMR) = 0.05] and excellent fit for HPSQ-C [χ2(32) = 31.12, p = 0.51; CFI = 1.0; TLI = 1.0; RMSEA = 0.0; SRMR = 0.04]. For the HPSQ-C models, there were no differences between boys and girls [Δχ2(7) = 12.55, p = 0.08]. Values of McDonalds's ω indicate excellent (HPSQ, ω = 0.9) and acceptable (HPSQ-C, ω = 0.7) reliability. Boys were assessed as worse writers than girls based on the results of both questionnaires. The grades positively correlate with the total scores of both HPSQ (r = 0.54, p < 0.01) and HPSQ-C (r = 0.28, p < 0.01). Based on the results, for the assessment of handwriting difficulties experienced by Czech children, we recommend using the HPSQ-C questionnaire for research purposes.

13.
Int J Neural Syst ; 29(2): 1850037, 2019 Mar.
Article En | MEDLINE | ID: mdl-30336711

Neurodegenerative pathologies as Parkinson's Disease (PD) show important distortions in speech, affecting fluency, prosody, articulation and phonation. Classically, measurements based on articulation gestures altering formant positions, as the Vocal Space Area (VSA) or the Formant Centralization Ratio (FCR) have been proposed to measure speech distortion, but these markers are based mainly on static positions of sustained vowels. The present study introduces a measurement based on the mutual information distance among probability density functions of kinematic correlates derived from formant dynamics. An absolute kinematic velocity associated to the position of the jaw and tongue articulation gestures is estimated and modeled statistically. The distribution of this feature may differentiate PD patients from normative speakers during sustained vowel emission. The study is based on a limited database of 53 male PD patients, contrasted to a very selected and stable set of eight normative speakers. In this sense, distances based on Kullback-Leibler divergence seem to be sensitive to PD articulation instability. Correlation studies show statistically relevant relationship between information contents based on articulation instability to certain motor and nonmotor clinical scores, such as freezing of gait, or sleep disorders. Remarkably, one of the statistically relevant correlations point out to the time interval passed since the first diagnostic. These results stress the need of defining scoring scales specifically designed for speech disability estimation and monitoring methodologies in degenerative diseases of neuromotor origin.


Articulation Disorders/physiopathology , Biomechanical Phenomena/physiology , Parkinson Disease/diagnosis , Aged , Articulation Disorders/etiology , Datasets as Topic , Dysarthria/etiology , Dysarthria/physiopathology , Humans , Jaw/physiopathology , Male , Middle Aged , Parkinson Disease/complications , Severity of Illness Index , Tongue/physiopathology
14.
Parkinsonism Relat Disord ; 61: 187-192, 2019 04.
Article En | MEDLINE | ID: mdl-30337204

INTRODUCTION: Hypokinetic dysarthria (HD) is a common symptom of Parkinson's disease (PD) which does not respond well to PD treatments. We investigated acute effects of repetitive transcranial magnetic stimulation (rTMS) of the motor and auditory feedback area on HD in PD using acoustic analysis of speech. METHODS: We used 10 Hz and 1 Hz stimulation protocols and applied rTMS over the left orofacial primary motor area, the right superior temporal gyrus (STG), and over the vertex (a control stimulation site) in 16 PD patients with HD. A cross-over design was used. Stimulation sites and protocols were randomised across subjects and sessions. Acoustic analysis of a sentence reading task performed inside the MR scanner was used to evaluate rTMS-induced effects on motor speech. Acute fMRI changes due to rTMS were also analysed. RESULTS: The 1 Hz STG stimulation produced significant increases of the relative standard deviation of the 2nd formant (p = 0.019), i.e. an acoustic parameter describing the tongue and jaw movements. The effects were superior to the control site stimulation and were accompanied by increased resting state functional connectivity between the stimulated region and the right parahippocampal gyrus. The rTMS-induced acoustic changes were correlated with the reading task-related BOLD signal increases of the stimulated area (R = 0.654, p = 0.029). CONCLUSION: Our results demonstrate for the first time that low-frequency stimulation of the temporal auditory feedback area may improve articulation in PD and enhance functional connectivity between the STG and the cortical region involved in an overt speech control.


Connectome , Dysarthria/physiopathology , Feedback, Sensory/physiology , Motor Cortex/physiopathology , Nerve Net/physiopathology , Parahippocampal Gyrus/physiopathology , Parkinson Disease/physiopathology , Temporal Lobe/physiopathology , Transcranial Magnetic Stimulation , Aged , Dysarthria/diagnostic imaging , Dysarthria/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Nerve Net/diagnostic imaging , Parahippocampal Gyrus/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Speech Acoustics , Temporal Lobe/diagnostic imaging
15.
Int J Neural Syst ; 29(2): 1850039, 2019 Mar.
Article En | MEDLINE | ID: mdl-30409059

Speech articulation is produced by the movements of muscles in the larynx, pharynx, mouth and face. Therefore speech shows acoustic features as formants which are directly related with neuromotor actions of these muscles. The first two formants are strongly related with jaw and tongue muscular activity. Speech can be used as a simple and ubiquitous signal, easy to record and process, either locally or on e-Health platforms. This fact may open a wide set of applications in the study of functional grading and monitoring neurodegenerative diseases. A relevant question, in this sense, is how far speech correlates and neuromotor actions are related. This preliminary study is intended to find answers to this question by using surface electromyographic recordings on the masseter and the acoustic kinematics related with the first formant. It is shown in the study that relevant correlations can be found among the surface electromyographic activity (dynamic muscle behavior) and the positions and first derivatives of the first formant (kinematic variables related to vertical velocity and acceleration of the joint jaw and tongue biomechanical system). As an application example, it is shown that the probability density function associated to these kinematic variables is more sensitive than classical features as Vowel Space Area (VSA) or Formant Centralization Ratio (FCR) in characterizing neuromotor degeneration in Parkinson's Disease.


Electromyography/methods , Masseter Muscle/physiology , Models, Neurological , Speech Production Measurement/methods , Speech/physiology , Adult , Aged , Biomechanical Phenomena , Dysarthria/diagnosis , Dysarthria/etiology , Humans , Jaw/physiology , Middle Aged , Parkinson Disease/complications , Parkinson Disease/diagnosis , Tongue/physiology
16.
Cognit Comput ; 10(6): 1006-1018, 2018.
Article En | MEDLINE | ID: mdl-30595758

Hypokinetic dysarthria (HD) and freezing of gait (FOG) are both axial symptoms that occur in patients with Parkinson's disease (PD). It is assumed they have some common pathophysiological mechanisms and therefore that speech disorders in PD can predict FOG deficits within the horizon of some years. The aim of this study is to employ a complex quantitative analysis of the phonation, articulation and prosody in PD patients in order to identify the relationship between HD and FOG, and establish a mathematical model that would predict FOG deficits using acoustic analysis at baseline. We enrolled 75 PD patients who were assessed by 6 clinical scales including the Freezing of Gait Questionnaire (FOG-Q). We subsequently extracted 19 acoustic measures quantifying speech disorders in the fields of phonation, articulation and prosody. To identify the relationship between HD and FOG, we performed a partial correlation analysis. Finally, based on the selected acoustic measures, we trained regression models to predict the change in FOG during a 2-year follow-up. We identified significant correlations between FOG-Q scores and the acoustic measures based on formant frequencies (quantifying the movement of the tongue and jaw) and speech rate. Using the regression models, we were able to predict a change in particular FOG-Q scores with an error of between 7.4 and 17.0 %. This study is suggesting that FOG in patients with PD is mainly linked to improper articulation, a disturbed speech rate and to intelligibility. We have also proved that the acoustic analysis of HD at the baseline can be used as a predictor of the FOG deficit during 2 years of follow-up. This knowledge enables researchers to introduce new cognitive systems that predict gait difficulties in PD patients.

17.
Curr Alzheimer Res ; 15(2): 139-148, 2018.
Article En | MEDLINE | ID: mdl-29165084

OBJECTIVE: Nowadays proper detection of cognitive impairment has become a challenge for the scientific community. Alzheimer's Disease (AD), the most common cause of dementia, has a high prevalence that is increasing at a fast pace towards epidemic level. In the not-so-distant future this fact could have a dramatic social and economic impact. In this scenario, an early and accurate diagnosis of AD could help to decrease its effects on patients, relatives and society. Over the last decades there have been useful advances not only in classic assessment techniques, but also in novel non-invasive screening methodologies. METHODS: Among these methods, automatic analysis of speech -one of the first damaged skills in AD patients- is a natural and useful low cost tool for diagnosis. RESULTS: In this paper a non-linear multi-task approach based on automatic speech analysis is presented. Three tasks with different language complexity levels are analyzed, and promising results that encourage a deeper assessment are obtained. Automatic classification was carried out by using classic Multilayer Perceptron (MLP) and Deep Learning by means of Convolutional Neural Networks (CNN) (biologically- inspired variants of MLPs) over the tasks with classic linear features, perceptual features, Castiglioni fractal dimension and Multiscale Permutation Entropy. CONCLUSION: Finally, the most relevant features are selected by means of the non-parametric Mann- Whitney U-test.


Alzheimer Disease/diagnosis , Diagnosis, Computer-Assisted , Pattern Recognition, Automated , Speech , Adult , Aged , Cognitive Dysfunction/diagnosis , Cohort Studies , Deep Learning , Diagnosis, Computer-Assisted/methods , Early Diagnosis , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Nonlinear Dynamics , Pattern Recognition, Automated/methods , Speech Production Measurement , Speech Recognition Software
18.
Cognit Comput ; 10(5): 874, 2018.
Article En | MEDLINE | ID: mdl-31186816

[This corrects the article DOI: 10.1007/s12559-017-9501-5.].

19.
Front Neuroinform ; 11: 56, 2017.
Article En | MEDLINE | ID: mdl-28970792

Aim: The research described is intended to give a description of articulation dynamics as a correlate of the kinematic behavior of the jaw-tongue biomechanical system, encoded as a probability distribution of an absolute joint velocity. This distribution may be used in detecting and grading speech from patients affected by neurodegenerative illnesses, as Parkinson Disease. Hypothesis: The work hypothesis is that the probability density function of the absolute joint velocity includes information on the stability of phonation when applied to sustained vowels, as well as on fluency if applied to connected speech. Methods: A dataset of sustained vowels recorded from Parkinson Disease patients is contrasted with similar recordings from normative subjects. The probability distribution of the absolute kinematic velocity of the jaw-tongue system is extracted from each utterance. A Random Least Squares Feed-Forward Network (RLSFN) has been used as a binary classifier working on the pathological and normative datasets in a leave-one-out strategy. Monte Carlo simulations have been conducted to estimate the influence of the stochastic nature of the classifier. Two datasets for each gender were tested (males and females) including 26 normative and 53 pathological subjects in the male set, and 25 normative and 38 pathological in the female set. Results: Male and female data subsets were tested in single runs, yielding equal error rates under 0.6% (Accuracy over 99.4%). Due to the stochastic nature of each experiment, Monte Carlo runs were conducted to test the reliability of the methodology. The average detection results after 200 Montecarlo runs of a 200 hyperplane hidden layer RLSFN are given in terms of Sensitivity (males: 0.9946, females: 0.9942), Specificity (males: 0.9944, females: 0.9941) and Accuracy (males: 0.9945, females: 0.9942). The area under the ROC curve is 0.9947 (males) and 0.9945 (females). The equal error rate is 0.0054 (males) and 0.0057 (females). Conclusions: The proposed methodology avails that the use of highly normalized descriptors as the probability distribution of kinematic variables of vowel articulation stability, which has some interesting properties in terms of information theory, boosts the potential of simple yet powerful classifiers in producing quite acceptable detection results in Parkinson Disease.

20.
Cognit Comput ; 9(5): 712-720, 2017.
Article En | MEDLINE | ID: mdl-30100928

Existing literature about online handwriting analysis to support pathology diagnosis has taken advantage of in-air trajectories. A similar situation occurred in biometric security applications where the goal is to identify or verify an individual using his signature or handwriting. These studies do not consider the distance of the pen tip to the writing surface. This is due to the fact that current acquisition devices do not provide height formation. However, it is quite straightforward to differentiate movements at two different heights (a) short distance: height lower or equal to 1 cm above a surface of digitizer, the digitizer provides x and y coordinates; (b) long distance: height exceeding 1 cm, the only information available is a time stamp that indicates the time that a specific stroke has spent at long distance. Although short distance has been used in several papers, long distances have been ignored and will be investigated in this paper. In this paper, we will analyze a large set of databases (BIOSECUR-ID, EMOTHAW, PaHaW, OXYGEN-THERAPY, and SALT), which contain a total amount of 663 users and 17,951 files. We have specifically studied (a) the percentage of time spent on-surface, in-air at short distance, and in-air at long distance for different user profiles (pathological and healthy users) and different tasks; (b) the potential use of these signals to improve classification rates. Our experimental results reveal that long distance movements represent a very small portion of the total execution time (0.5% in the case of signatures and 10.4% for uppercase words of BIOSECUR-ID, which is the largest database). In addition, significant differences have been found in the comparison of pathological versus control group for letter "l" in PaHaW database (p = 0.0157) and crossed pentagons in SALT database (p = 0.0122).

...