Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Methods Mol Biol ; 2494: 161-194, 2022.
Article in English | MEDLINE | ID: mdl-35467207

ABSTRACT

Rice (Oryza sativa L.) is the staple food for over half of the world population. However, most rice varieties are severely injured by abiotic stresses, with strong social and economic impacts. Understanding rice responses to stress may guide breeding for more tolerant varieties. However, the lack of consistency in the design of the stress experiments described in the literature limits comparative studies and output assessments. The use of identical setups is the only way to generate comparable data. This chapter comprises three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB NOVA to assess the response of rice plants to different abiotic stresses-high salinity, cold, drought, simulated drought, and submergence-and their recovery capacity when intended. All sections include a detailed description of the materials and methodology and useful notes gathered from our team experience. We use seedlings since rice plants at this stage show high sensitivity to abiotic stresses. For the salt, cold, and simulated drought (PEG, polyethylene glycol) stress assays, we grow rice seedlings in a hydroponic system, while for the drought assay, plants are grown in soil and subjected to water withholding. For submergence, we use water-filled Magenta boxes. All setups enable visual score determination and are suitable for sample collection during stress imposition and also recovery. The proposed methodologies are affordable and straightforward to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic levels.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Oryza/genetics , Plant Breeding , Seedlings/genetics , Stress, Physiological/genetics , Water
2.
Front Plant Sci ; 12: 640193, 2021.
Article in English | MEDLINE | ID: mdl-33833769

ABSTRACT

Plants are unable to physically escape environmental constraints and have, therefore, evolved a range of molecular and physiological mechanisms to maximize survival in an ever-changing environment. Among these, the post-translational modification of ubiquitination has emerged as an important mechanism to understand and improve the stress response. The ubiquitination of a given protein can change its abundance (through degradation), alter its localization, or even modulate its activity. Hence, ubiquitination increases the plasticity of the plant proteome in response to different environmental cues and can contribute to improve stress tolerance. Although ubiquitination is mediated by different enzymes, in this review, we focus on the importance of E3-ubiquitin ligases, which interact with the target proteins and are, therefore, highly associated with the mechanism specificity. We discuss their involvement in abiotic stress response and place them as putative candidates for ubiquitination-based development of stress-tolerant crops. This review covers recent developments in this field using rice as a reference for crops, highlighting the questions still unanswered.

SELECTION OF CITATIONS
SEARCH DETAIL
...