Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 14(1): 8121, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065954

ABSTRACT

Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.


Subject(s)
Cysteine Endopeptidases , Ribosomes , Tumor Suppressor Protein p53 , Cell Nucleolus/metabolism , Cell Proliferation , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Humans , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism
2.
Cell Rep ; 42(12): 113484, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37999976

ABSTRACT

The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Autophagy/physiology , Mutation/genetics , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism
3.
Matrix Biol ; 100-101: 30-38, 2021 06.
Article in English | MEDLINE | ID: mdl-33556475

ABSTRACT

The nucleolus functions as the cellular hub for the initiation and early steps of ribosome biogenesis. Ribosomes are key components of the translation machinery and, accordingly, their abundance needs to be adjusted to the cellular energy status. Further, to ensure translational fidelity, the integrity and quality of ribosomes needs to be monitored under conditions of cellular stress. Stressful insults, such as nutrient, genotoxic or proteotoxic stress, interfere with ribosome biogenesis and activate a cellular response referred to as nucleolar stress. This nucleolar stress response typically affects nucleolar integrity and is intricately linked to the activation of protein quality control pathways, including (i) the ubiquitin proteasome system (UPS) and (ii) the autophagy machinery, to restore cellular proteostasis. Here we will review some key features of the nucleolar stress response with a particular focus on the role of the UPS and autophagy in this process.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Autophagy , Homeostasis , Ribosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...