Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Zookeys ; 1213: 95-182, 2024.
Article in English | MEDLINE | ID: mdl-39372282

ABSTRACT

Micropholcus Deeleman-Reinhold & Prinsen, 1987 is one of only two Pholcidae genera known to occur both in the Old and New Worlds. However, there are major morphological and ecological differences among geographically separate groups of species, and it was mainly molecular data that have resulted in our current view of uniting all these species into a single genus. In the Old World, only four species have previously been described. Here, current knowledge about Old World Micropholcus is reviewed, redescribing three of the four previously known species, and describing twelve new species, originating from Saudi Arabia (M.dhahran Huber, sp. nov., M.harajah Huber, sp. nov., M.alfara Huber, sp. nov., M.abha Huber, sp. nov., M.tanomah Huber, sp. nov., M.bashayer Huber, sp. nov., M.maysaan Huber, sp. nov.), Oman (M.darbat Huber, sp. nov., M.shaat Huber, sp. nov.), Morocco (M.ghar Huber, sp. nov., M.khenifra Huber, Lecigne & Lips, sp. nov.), and the Philippines (M.bukidnon Huber, sp. nov.). We provide an exploratory species delimitation analysis based on CO1 barcodes, extensive SEM data, and first records of Acroceridae (Diptera) larvae in Pholcidae, extracted from book lungs.

2.
Life (Basel) ; 14(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39337870

ABSTRACT

This study aimed to discuss the differences in technical characteristics between the lunge-style and squat-style jerk techniques and to reveal the adaptability of these techniques for individual weightlifters. A total of 52 attempts by 32 male weightlifters were selected, and the video data were digitized manually using the SIMI Motion 7.50 three-dimensional analysis system. The technical characteristics of the lunge split and squat jerk were fundamentally consistent during the pre-squat, force exertion, and inertia ascent phases. The primary differences between the lunge split and squat jerk techniques were observed during the squatting and support phases, including the vertical descent velocity of the barbell at the end of the squat shoulder-locking phase and the stability angles in the sagittal and coronal axes. The vertical velocity of the barbell at the end of the squat shoulder-locking phase was significantly greater in the squat style (-0.41 ± 0.17 vs. -0.88 ± 0.14) compared to the lunge style (t = 6.393, p < 0.05). The stability angle on the sagittal axis at the end of the squat-supporting phase in the lunge style was significantly greater (46.99 ± 3.23 vs. 13.64 ± 0.51) than that of the squat style (t = 45.639, p < 0.05).

3.
Invertebr Syst ; 382024 Feb.
Article in English | MEDLINE | ID: mdl-38744495

ABSTRACT

Ninetinae is a group of small to tiny short-legged spiders largely restricted to arid habitats. Among daddy-long-legs spiders (Pholcidae) this is by far the least diverse subfamily but this may partly be a result of inadequate collecting, poor representation in collections or scientific neglect. We build on a large recent collection of the ninetine genus Papiamenta Huber, 2000 from the Leeward Antilles and use cytochrome oxidase 1 (COI ) sequences, extensive scanning electron microscopy data, transmission electron microscopy data and karyotyping to analyse this geographically isolated and poorly known island genus. COI sequences support the split between the two morphologically distinct species on Curaçao but genetic distances between these are surprisingly low (7.4-9.8%; mean 8.6%). The type species P. levii (Gertsch, 1982) may include more than one species but COI and morphology suggest conflicting clade limits. A third species, P. bonay Huber sp. nov. is newly described from Bonaire. Our data on sperm ultrastructure and karyology are puzzling as these suggest different phylogenetic affinities of Papiamenta to other genera. Males transfer sperm as individual sperm (cleistosperm), agreeing with the putative closest relatives as suggested by molecular data, the North American genera Pholcophora and Tolteca . The sex chromosome system (X 1 X 2 X 3 Y ) of P. levii , however, is as in the South American Ninetinae genera Gertschiola and Nerudia but different from the putative closest relatives. ZooBank: urn:lsid:zoobank.org:pub:7A6A2E84-3A61-4637-AF6F-0E31A9FA79A8.


Subject(s)
Phylogeny , Spiders , Animals , Spiders/genetics , Spiders/classification , Male , Electron Transport Complex IV/genetics , Species Specificity , Female , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612644

ABSTRACT

Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.


Subject(s)
Antimicrobial Peptides , Food Safety , Humans , Animals , Phylogeny , Insecta , Nitric Oxide
5.
Zootaxa ; 5419(3): 301-347, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38480321

ABSTRACT

The genus Galapa Huber, 2000 includes tiny spiders (body length <1.5 mm) restricted to semi-arid habitats. It has long been thought to be endemic to the Galapagos Islands until G. spiniphila Huber, 2020 was described from the Venezuelan Paraguan Peninsula. Here, we support this generic assignment with molecular (CO1) data and describe two new species from Colombia (G. gabito Huber sp. n.) and Costa Rica (G. murphyi Huber sp. n.), showing that the genus is actually widely distributed. Distribution modelling identifies several high suitability areas for Galapa, all of which are poorly sampled with respect to Pholcidae (ranging from Nicaragua to northern Peru and Guiana). Our results suggest a strong sampling bias against spiders restricted to dry tropical regions and habitats.


Subject(s)
Spiders , Animals , Animal Distribution
6.
Zootaxa ; 5419(2): 217-244, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38480328

ABSTRACT

The genus Chisosa Huber, 2000 previously included only three species of small to tiny North American and Caribbean spiders that are rare in collections and poorly studied. Originally placed in the subfamily Ninetinae, Chisosa is currently considered a representative of Arteminae, close to the North American genus Physocyclus Simon, 1893. This placement has been suggested by molecular data, and it affects the interpretation of morphological characters that were originally thought to support the monophyly of Chisosa: they are shared with Physocyclus and thus plesiomorphic for Chisosa. Here we describe a new species from Mexico, C. calapa sp. nov., and restudy in detail the morphology (incl. ultrastructure) of the type species C. diluta (Gertsch & Mulaik, 1940) and of C. caquetio Huber, 2019, based on newly collected material. We document further similarities with Physocyclus but find only weak morphological support for the monophyly of Chisosa (body size reduction and short legs). In addition, we document surprisingly large genetic distances among C. caquetio specimens from Curaao (>14% CO1 K2P distances), possibly indicating species limits. Finally, we propose that the Dominican amber genus Serratochorus Wunderlich, 1988, based on a single male specimen, is also phylogenetically close to Chisosa and should be included in future studies on these enigmatic spiders.


Subject(s)
Spiders , Male , Animals , Mexico , Animal Distribution , Animal Structures/anatomy & histology , Organ Size
7.
Proc Biol Sci ; 290(1999): 20230538, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37253422

ABSTRACT

The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.


Subject(s)
Circadian Rhythm , Ruminants , Thermogenesis , Animals , Adipose Tissue, Brown/metabolism , Goats , Reindeer/genetics , Ruminants/genetics , Thermogenesis/genetics , Arctic Regions
8.
Commun Biol ; 5(1): 1417, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572770

ABSTRACT

The systematics of the Cricetid genus Neodon have long been fraught with uncertainty due to sampling issues and a lack of comprehensive datasets. To gain better insights into the phylogeny and evolution of Neodon, we systematically sampled Neodon across the Hengduan and Himalayan Mountains, which cover most of its range in China. Analyses of skulls, teeth, and bacular structures revealed 15 distinct patterns corresponding to 15 species of Neodon. In addition to morphological analyses, we generated a high-quality reference genome for the mountain vole and generated whole-genome sequencing data for 47 samples. Phylogenomic analyses supported the recognition of six new species, revealing a long-term underestimation of Neodon diversity. We further identified positively selected genes potentially related to high-elevation adaptation. Together, our results illuminate how climate change caused the plateau to become the centre of Neodon origin and diversification and how mountain voles have adapted to the hypoxic high-altitude plateau environment.


Subject(s)
Arvicolinae , Rodentia , Animals , Arvicolinae/genetics , Phylogeny , China , Environment
9.
Zool Res ; 43(5): 813-826, 2022 Sep 18.
Article in English | MEDLINE | ID: mdl-35993133

ABSTRACT

Pikas (Lagomorpha: Ochotonidae) are small mouse-like lagomorphs. To investigate their adaptation to different ecological environments during their dispersal from the Qinghai-Xizang (Tibet) Plateau (QTP), we collected 226 pikas and measured 20 morphological characteristics and recorded habitat information. We also sequenced the genome of 81 specimens, representing 27 putative pika species. The genome-wide tree based on 4 090 coding genes identified five subgenera, i.e., Alienauroa, Conothoa, Lagotona, Ochotona, and Pika, consistent with morphometric data. Morphologically, Alienauroa and Ochotona had similar traits, including smaller size and earlier divergence time compared to other pikas. Consistently, the habitats of Alienauroa and Ochotona differed from those of the remaining subgenera. Phylogenetic signal analysis detected 83 genes significantly related to morphological characteristics, including several visual and hearing-related genes. Analysis of shared amino acid substitutions and positively selected genes (PSGs) in Alienauroa and Ochotona identified two genes, i.e., mitochondrial function-related TSFM (p.Q155E) and low-light visual sensitivity-related PROM1 (p.H419Y). Functional experiments demonstrated that TSFM-155E significantly enhanced mitochondrial function compared to TSFM-155Q in other pikas, and PROM1-419Y decreased the modeling of dynamic intracellular chloride efflux upon calcium uptake. Alienauroa and Ochotona individuals mostly inhabit different environments (e.g., subtropical forests) than other pikas, suggesting that a shift from the larger ancestral type and changes in sensory acuity and energy enhancement may have been required in their new environments. This study increases our understanding of the evolutionary history of pikas.


Subject(s)
Lagomorpha , Animals , Forests , Genomics , Lagomorpha/genetics , Mice , Phenotype , Phylogeny
10.
Plant Commun ; 3(6): 100410, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35841151

ABSTRACT

Terpenoids, including aromatic volatile monoterpenoids and sesquiterpenoids, function in defense against pathogens and herbivores. Phoebe trees are remarkable for their scented wood and decay resistance. Unlike other Lauraceae species investigated to date, Phoebe species predominantly accumulate sesquiterpenoids instead of monoterpenoids. Limited genomic data restrict the elucidation of terpenoid variation and functions. Here, we present a chromosome-scale genome assembly of a Lauraceae tree, Phoebe bournei, and identify 72 full-length terpene synthase (TPS) genes. Genome-level comparison shows pervasive lineage-specific duplication and contraction of TPS subfamilies, which have contributed to the extreme terpenoid variation within Lauraceae species. Although the TPS-a and TPS-b subfamilies were both expanded via tandem duplication in P. bournei, more TPS-a copies were retained and constitutively expressed, whereas more TPS-b copies were lost. The TPS-a genes on chromosome 8 functionally diverged to synthesize eight highly accumulated sesquiterpenes in P. bournei. The essential oil of P. bournei and its main component, ß-caryophyllene, exhibited antifungal activities against the three most widespread canker pathogens of trees. The TPS-a and TPS-b subfamilies have experienced contrasting fates over the evolution of P. bournei. The abundant sesquiterpenoids produced by TPS-a proteins contribute to the excellent pathogen resistance of P. bournei trees. Overall, this study sheds light on the evolution and adaptation of terpenoids in Lauraceae and provides valuable resources for boosting plant immunity against pathogens in various trees and crops.


Subject(s)
Lauraceae , Sesquiterpenes , Lauraceae/metabolism , Terpenes/metabolism , Sesquiterpenes/metabolism , Monoterpenes/metabolism , Chromosomes/metabolism
11.
Food Chem ; 371: 131066, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34543927

ABSTRACT

The adulteration of honey is common. Recently, High Throughput Sequencing (HTS)-based metabarcoding method has been applied successfully to pollen/honey identification to determine floral composition that, in turn, can be used to identify the geographical origins of honeys. However, the lack of local references materials posed a serious challenge for HTS-based pollen identification methods. Here, we sampled 28 honey samples from various geographic origins without prior knowledge of local floral information and applied a machine learning method to determine geographical origins. The machine learning method uses a resilient backpropagation algorithm to train a neural network. The results showed that biological components in honey provided characteristic traits that enabled accurate geographic tracing for nearly all honey samples, confidently discriminating honeys to their geographic origin with >99% success rates, including those separated by as little as 39 km.


Subject(s)
Honey , High-Throughput Nucleotide Sequencing , Honey/analysis , Machine Learning , Metagenomics , Pollen
12.
J Genet Genomics ; 49(2): 109-119, 2022 02.
Article in English | MEDLINE | ID: mdl-34872841

ABSTRACT

Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of "evolutionary strata". Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in the older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate such "defeminization" of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females rather than males, which evolved in their common ancestors.


Subject(s)
Palaeognathae , Animals , Birds/genetics , Evolution, Molecular , Female , Genome/genetics , Male , Palaeognathae/genetics , Phylogeny , Sex Chromosomes/genetics
13.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34433011

ABSTRACT

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Subject(s)
Evolution, Molecular , Genome , Perissodactyla/genetics , Animals , Demography , Gene Flow , Genetic Variation , Geography , Heterozygote , Homozygote , Host Specificity , Markov Chains , Mutation/genetics , Phylogeny , Species Specificity , Time Factors
15.
BMC Genomics ; 21(1): 862, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33276723

ABSTRACT

BACKGROUND: Over the last decade, the rapid development of high-throughput sequencing platforms has accelerated species description and assisted morphological classification through DNA barcoding. However, the current high-throughput DNA barcoding methods cannot obtain full-length barcode sequences due to read length limitations (e.g. a maximum read length of 300 bp for the Illumina's MiSeq system), or are hindered by a relatively high cost or low sequencing output (e.g. a maximum number of eight million reads per cell for the PacBio's SEQUEL II system). RESULTS: Pooled cytochrome c oxidase subunit I (COI) barcodes from individual specimens were sequenced on the MGISEQ-2000 platform using the single-end 400 bp (SE400) module. We present a bioinformatic pipeline, HIFI-SE, that takes reads generated from the 5' and 3' ends of the COI barcode region and assembles them into full-length barcodes. HIFI-SE is written in Python and includes four function modules of filter, assign, assembly and taxonomy. We applied the HIFI-SE to a set of 845 samples (30 marine invertebrates, 815 insects) and delivered a total of 747 fully assembled COI barcodes as well as 70 Wolbachia and fungi symbionts. Compared to their corresponding Sanger sequences (72 sequences available), nearly all samples (71/72) were correctly and accurately assembled, including 46 samples that had a similarity score of 100% and 25 of ca. 99%. CONCLUSIONS: The HIFI-SE pipeline represents an efficient way to produce standard full-length barcodes, while the reasonable cost and high sensitivity of our method can contribute considerably more DNA barcodes under the same budget. Our method thereby advances DNA-based species identification from diverse ecosystems and increases the number of relevant applications.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , Animals , DNA , High-Throughput Nucleotide Sequencing , Insecta
16.
Gigascience ; 9(12)2020 12 15.
Article in English | MEDLINE | ID: mdl-33319909

ABSTRACT

BACKGROUND: The availability of reference genomes has revolutionized the study of biology. Multiple competing technologies have been developed to improve the quality and robustness of genome assemblies during the past decade. The 2 widely used long-read sequencing providers-Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)-have recently updated their platforms: PacBio enables high-throughput HiFi reads with base-level resolution of >99%, and ONT generated reads as long as 2 Mb. We applied the 2 up-to-date platforms to a single rice individual and then compared the 2 assemblies to investigate the advantages and limitations of each. RESULTS: The results showed that ONT ultralong reads delivered higher contiguity, producing a total of 18 contigs of which 10 were assembled into a single chromosome compared to 394 contigs and 3 chromosome-level contigs for the PacBio assembly. The ONT ultralong reads also prevented assembly errors caused by long repetitive regions, for which we observed a total of 44 genes of false redundancies and 10 genes of false losses in the PacBio assembly, leading to over- or underestimation of the gene families in those long repetitive regions. We also noted that the PacBio HiFi reads generated assemblies with considerably fewer errors at the level of single nucleotides and small insertions and deletions than those of the ONT assembly, which generated an average 1.06 errors per kb and finally engendered 1,475 incorrect gene annotations via altered or truncated protein predictions. CONCLUSIONS: It shows that both PacBio HiFi reads and ONT ultralong reads had their own merits. Further genome reference constructions could leverage both techniques to lessen the impact of assembly errors and subsequent annotation mistakes rooted in each.


Subject(s)
Nanopores , Genome , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Sequence Analysis, DNA
17.
Nature ; 587(7833): 252-257, 2020 11.
Article in English | MEDLINE | ID: mdl-33177665

ABSTRACT

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Subject(s)
Birds/classification , Birds/genetics , Genome/genetics , Genomics/methods , Genomics/standards , Phylogeny , Animals , Chickens/genetics , Conservation of Natural Resources , Datasets as Topic , Finches/genetics , Humans , Selection, Genetic/genetics , Synteny/genetics
19.
BMC Evol Biol ; 20(1): 144, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33148176

ABSTRACT

BACKGROUND: Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data. RESULTS: We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda. CONCLUSIONS: Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.


Subject(s)
Arthropods , Phylogeny , Animals , Arthropods/classification , Arthropods/genetics , Transcriptome
20.
Nat Commun ; 11(1): 4939, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009390

ABSTRACT

Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication.


Subject(s)
Acoustics , Biological Evolution , Grasshoppers/classification , Grasshoppers/genetics , Phylogeny , Vocalization, Animal , Animals , Bayes Theorem , Genome, Mitochondrial , Grasshoppers/anatomy & histology , Hearing/physiology , Models, Biological , Sound , Time Factors , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL