Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 98
1.
Front Pharmacol ; 15: 1370444, 2024.
Article En | MEDLINE | ID: mdl-38694916

Introduction: The escalating global surge in Rifampicin-resistant strains poses a formidable challenge to the worldwide campaign against tuberculosis (TB), particularly in developing countries. The frequent reports of suboptimal treatment outcomes, complications, and the absence of definitive treatment guidelines for Rifampicin-resistant spinal TB (DSTB) contribute significantly to the obstacles in its effective management. Consequently, there is an urgent need for innovative and efficacious drugs to address Rifampicin-resistant spinal tuberculosis, minimizing the duration of therapy sessions. This study aims to investigate potential targets for DSTB through comprehensive proteomic and pharmaco-transcriptomic analyses. Methods: Mass spectrometry-based proteomics analysis was employed to validate potential DSTB-related targets. PPI analysis confirmed by Immunohistochemistry (IHC) and Western blot analysis. Results: The proteomics analysis revealed 373 differentially expressed proteins (DEPs), with 137 upregulated and 236 downregulated proteins. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses delved into the DSTB-related pathways associated with these DEPs. In the context of network pharmacology analysis, five key targets-human leukocyte antigen A chain (HLAA), human leukocyte antigen C chain (HLA-C), HLA Class II Histocompatibility Antigen, DRB1 Beta Chain (HLA-DRB1), metalloproteinase 9 (MMP9), and Phospholipase C-like 1 (PLCL1)-were identified as pivotal players in pathways such as "Antigen processing and presentation" and "Phagosome," which are crucially enriched in DSTB. Moreover, pharmaco-transcriptomic analysis can confirm that 58 drug compounds can regulate the expression of the key targets. Discussion: This research confirms the presence of protein alterations during the Rifampicin-resistant process in DSTB patients, offering novel insights into the molecular mechanisms underpinning DSTB. The findings suggest a promising avenue for the development of targeted drugs to enhance the management of Rifampicin-resistant spinal tuberculosis.

2.
Nat Commun ; 15(1): 3759, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704384

Millimeter-scale soft continuum robots offer safety and adaptability in transluminal procedures due to their passive compliance, but this feature necessitates interactions with surrounding lumina, leading to potential medical risks and restricted mobility. Here, we introduce a millimeter-scale continuum robot, enabling apical extension while maintaining structural stability. Utilizing phase transition components, the robot executes cycles of tip-based elongation, steered accurately through programmable magnetic fields. Each motion cycle features a solid-like backbone for stability, and a liquid-like component for advancement, thereby enabling autonomous shaping without reliance on environmental interactions. Together with clinical imaging technologies, we demonstrate the capability of navigating through tortuous and fragile lumina to transport microsurgical tools. Once it reaches larger anatomical spaces such as stomach, it can morph into functional 3D structures that serve as surgical tools or sensing units, overcoming the constraints of initially narrow pathways. By leveraging this design paradigm, we anticipate enhanced safety, multi-functionality, and cooperative capabilities among millimeter-scale continuum robots, opening new avenues for transluminal robotic surgery.


Robotic Surgical Procedures , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Humans , Equipment Design , Robotics/instrumentation , Robotics/methods , Magnetic Fields , Microsurgery/instrumentation , Microsurgery/methods , Animals , Magnetics
3.
Int J Biol Macromol ; 271(Pt 2): 132592, 2024 May 30.
Article En | MEDLINE | ID: mdl-38820905

Torreya grandis wax (TGW), a new nut wax and by-product of refined Torreya grandis oil, lacks sufficient research and application. In this study, the gelling behavior in diacylglycerol (DAG) and chemical compositions of TGW were investigated. Compared with four typical natural waxes, TGW exhibited the lowest critical gelling concentration (Cg, 1 %wt) in DAG. The results performed that TGW-DAG oleogels at Cg possessed the highest G'LVR and G″, highest critical stress, good thermal stability, moderate viscosity recovery, and osc. yields stress, indicating strong gel. The microstructure and correlation analysis revealed that excellent gelling behaviors of TGW-DAG oleogels were due to the solid three-dimensional network formed by rod-like TGW crystal, and the higher hydrocarbon compound (HC) content and HC/wax ester in TGW. Formulation optimization suggested that oleogel containing 3.2 % TGW and 1.0 % diosgenin (DSG) better mimicked the characteristics of shortening in terms of hardness, adhesiveness, spreadability. The bread prepared with TGW/DSG-DAG oleogel owned uniform and dense pores, the best moisture retention capability, and soft and firm taste, demonstrating that TGW/DSG-DAG oleogel was a good shortening substitute. Therefore, this study provides the systematically fundamental knowledge of TGW and develops DSG-TGW-DAG oleogels as promising shortening substitutions.

4.
Heliyon ; 10(10): e30315, 2024 May 30.
Article En | MEDLINE | ID: mdl-38765036

In this study, bibliometric analysis was carried out to comprehend the global research trends, hotspots, scientific frontiers, and output characteristics of the links between dendritic cells (DCs) and allergic diseases from 2004 to 2023. Publications and their recorded information were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer and Citespace were used to visualize the hotspots and trends of research area. ChemBio 3D, Autodock tools, and Discovery Studio were used to visualize the molecular docking results of hotspots. A total of 4861 articles were retrieved. The number of publications (Np) was in a high and stable state. Years 2011 and 2017 were two peaks in Np. The largest contributor in terms of publications, scholars, and affiliations was the USA. The paper published in NATURE MEDICINE (IF: 82.9) and written by Trompette, A in 2006 had the highest global citation score (GCS). Keywords, such as "asthma," "t-cells," "inflammation," "expression," "atopic dermatitis," "food allergy," "gut microbiota," "murine model," and "cytokines related to immunity" appeared the most frequently. Most of the binding free energy of the key active components of Saposhnikovia divaricata docked with toll-like receptor proteins well. This bibliometric study aimed to help better comprehend the present state and make decisions from a macro viewpoint.

5.
Food Chem ; 445: 138682, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38350196

Food matrices greatly impact TBBQ content during digestion, while lacking sufficient research and understanding. This study investigated the influence and mechanism of fried foods on the TBBQ-eliminated performance during in-vitro digestion. The results indicated that TBBQ content varied significantly among food matrices after in-vitro digestion, with the highest in peanuts (38.3%). The correlation analysis revealed that proteins remarkably facilitated TBBQ-eliminations while fats decreased the TBBQ-eliminated rate. The TBBQ-eliminated performance of proteins, protein digestive mixtures, and amino acids uncovered that sulfhydryl groups were crucial reactive groups to eliminate TBBQ, and TBBQ-eliminated rates under intestinal pH (8.0) were faster than gastric pH (1.5). Additionally, fats significantly reduced the protein-triggered TBBQ-eliminations, originating that the oil-water interface increased the interaction difficulty between lipophilic TBBQ and proteins. Thus, this work provided an in-depth understanding of food matrices (especially proteins and fats) in TBBQ eliminations to enlighten the promising TBBQ-risk-reduced strategies with high-protein and low-fat foods.


Food , Intestines , Digestion
6.
Reprod Sci ; 31(3): 832-839, 2024 Mar.
Article En | MEDLINE | ID: mdl-37831368

Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Previous studies have suggested that metabolites may play a pivotal mediating role in the progression of phenotypic variations. Although several metabolites had been identified as potential markers for PCOS, the relationship between blood metabolites and PCOS was not comprehensively explored. Previously, Pickrell et al. designed a robust approach to infer evidence of a causal relationship between different phenotypes using independently putative causal SNPs. Our previous paper extended this approach to make it more suitable for cases where only a few independently putative causal SNPs were identified to be significantly associated with the phenotypes (i.e., metabolites). When the most significant SNPs in each independent locus (the independent lead SNPs) with p-values of < 1 × 10-5 were used, 3 metabolites (2-tetradecenoyl carnitine, threitol, 1-docosahexaenoylglycerophosphocholine) causally influencing PCOS and 2 metabolites (asparagine and phenyllactate) influenced by PCOS were identified, (relative likelihood r < 0.01). Under a less stringent threshold of r < 0.05, 7 metabolites (trans-4-hydroxyproline, glutaroyl carnitine, stachydrine, undecanoate, 7-Hoca, N-acetylalanine and 2-hydroxyisobutyrate) were identified. Taken together, this study can provide novel insights into the pathophysiological mechanisms underlying PCOS; whether these metabolites can serve as biomarkers to predict PCOS in clinical practice warrants further investigations.


Hyperandrogenism , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/genetics , Genome-Wide Association Study , Phenotype , Carnitine
7.
Food Chem Toxicol ; 183: 114200, 2024 Jan.
Article En | MEDLINE | ID: mdl-38029872

2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 µM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.


Amino Acids , Cysteine , Cysteine/pharmacology , Dietary Proteins , Digestion
8.
Food Sci Biotechnol ; 32(14): 2043-2055, 2023 Dec.
Article En | MEDLINE | ID: mdl-37860735

Gardenia jasminoides Ellis, a representative for "homology of medicine and food", can be used to produce pigment and edible oil. Here, aqueous enzymatic extraction (AEE) combined with puffing pre-treatment was explored to prepare oil from gardenia seeds. Both wet-heating puffing (WP) at 90 °C and dry-heating puffing (DP) at 1.0 MPa facilitated the release of free oil by AEE, resulting in the highest free oil yields (FOY) of 21.8% and 23.2% within 3 h, much higher than that of un-puffed group. Additionally, active crocin and geniposide were also completely released. The FOY obtained was much higher than mechanical pressing method (10.44%), and close to solvent extraction (25.45%). Microstructure analysis indicated that gardenia seeds expanded by dry-heating puffing (1.0 MPa) had a larger, rougher surface and porous structure than other groups. Overall, AEE coupled with puffing pre-treatment developed is an eco-friendly extraction technology with high efficiency that can be employed to oil preparation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01319-9.

9.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37882781

Gardenia fruit (GF) is the mature fruit of Gardenia jasminoides Ellis, boasting a rich array of nutrients and phytochemicals. Over time, GF has been extensively utilized in both food and medicinal contexts. In recent years, numerous studies have delved into the chemical constituents of GF and their associated pharmacological activities, encompassing its phytochemical composition and health-promoting properties. This review aims to provide a critical and comprehensive summary of GF research, covering nutrient content, extraction technologies, and potential health benefits, offering new avenues for future investigations and highlighting its potential as an innovative food resource. Additionally, the review proposes novel industrial applications for GF, such as utilizing gardenia yellow/red/blue pigments in the food industry and incorporating it with other herbs in traditional Chinese medicine. By addressing current challenges in developing GF-related products, this work provides insights for potential applications in the cosmetics, food, and health products industries. Notably, there is a need for the development of more efficient extraction methods to harness the nutritional components of GF fully. Further research is needed to understand the specific molecular mechanisms underlying its bioactivities. Exploring advanced processing techniques to create innovative GF-derived products will show great promise for the future.

10.
Nat Commun ; 14(1): 6853, 2023 10 27.
Article En | MEDLINE | ID: mdl-37891329

Although the gut microbiota has been reported to influence osteoporosis risk, the individual species involved, and underlying mechanisms, remain largely unknown. We performed integrative analyses in a Chinese cohort of peri-/post-menopausal women with metagenomics/targeted metabolomics/whole-genome sequencing to identify novel microbiome-related biomarkers for bone health. Bacteroides vulgatus was found to be negatively associated with bone mineral density (BMD), which was validated in US white people. Serum valeric acid (VA), a microbiota derived metabolite, was positively associated with BMD and causally downregulated by B. vulgatus. Ovariectomized mice fed B. vulgatus demonstrated increased bone resorption and poorer bone micro-structure, while those fed VA demonstrated reduced bone resorption and better bone micro-structure. VA suppressed RELA protein production (pro-inflammatory), and enhanced IL10 mRNA expression (anti-inflammatory), leading to suppressed maturation of osteoclast-like cells and enhanced maturation of osteoblasts in vitro. The findings suggest that B. vulgatus and VA may represent promising targets for osteoporosis prevention/treatment.


Bone Resorption , Gastrointestinal Microbiome , Osteoporosis , Humans , Female , Mice , Animals
11.
Dalton Trans ; 52(29): 10109-10114, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37427606

A new complex rare earth borate K7PbLu2B15O30 was prepared by the spontaneous crystallization method. K7PbLu2B15O30 is crystallized in the chiral trigonal space group R32 with cell parameters a = b = 13.0893(3) Å, c = 15.2379(6) Å, α = ß = 90°, γ = 120°, and Z = 3. The basic structure of the crystal can be seen as composed of B5O10 groups and LuO6 polyhedra sharing oxygen atoms, while K+ and Pb2+ fill the space to balance the charge. The UV transmission cut-off edge of K7PbLu2B15O30 was less than 300 nm, and the powder SHG response was roughly 1.1 times that of KDP. Furthermore, a first-principles analysis was performed to see more about the relationship between the crystal structure and optical characteristics.

12.
Calcif Tissue Int ; 113(3): 286-294, 2023 09.
Article En | MEDLINE | ID: mdl-37477662

Dozens of loci associated with fracture have been identified by genome-wide association studies (GWASs). However, most of these variants are located in the noncoding regions including introns, long terminal repeats, and intergenic regions. Although combining regulation information helps to identify the causal SNPs and interpret the involvement of these variants in the etiology of human fracture, regulation information which was truly associated with fracture was unknown. A novel functional enrichment method GARFIELD (GWAS Analysis of Regulatory of Functional Information Enrichment with LD correction) was applied to identify fracture-associated regulation information, including transcript factor binding sites, expression quantitative trait loci (eQTLs), chromatin states, enhancer, promoter, dyadic, super enhancer and Epigenome marks. Fracture SNPs were significantly enriched in exon (Bonferroni correction, p value < 7.14 × 10-3) at two GWAS p value thresholds through GARFIELD. High level of fold-enrichment was observed in super enhancer of monocyte and the enhancer of chondrocyte (Bonferroni correction, p value < 4.45 × 10-3). eQTLs of 44 tissues/cells and 10 transcription factors (TFs) were identified to be associated with human fracture. These results provide new insight into the etiology of human fracture, which might increase the identification of the causal SNPs through the fine-mapping study combined with functional annotation, as well as polygenic risk score.


Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Genome-Wide Association Study/methods , Promoter Regions, Genetic , Quantitative Trait Loci/genetics , Transcription Factors , Genetic Predisposition to Disease
13.
Nanoscale ; 15(28): 11990-11999, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37401547

Traditional force-distance curve based atomic force microscopy (FD-AFM) is limited to two-dimensional (2D) surface characterization, making the in situ mapping of three-dimensional (3D) surface nanomechanical properties (SNMP) challenging. This paper presents a multimode 3D FD-AFM based on a magnetic-drive orthogonal cantilever probe (MD-OCP) that can achieve SNMP imaging of 3D micro-nano structures with surface contour fluctuations reaching or exceeding several microns. Bending, torsion and vector tracking modes are integrated into this method for a 2D horizontal surface, 2D sidewall, and 3D surface mapping, respectively. The MD-OCP consists of a horizontal cantilever, a vertical cantilever with a protruding tip, and a magnetized bead. It can be utilized in the detection of deep trench and dense microarray units. The force analysis during 3D SNMP measurement is performed through mathematical derivation, which shows a clear relationship between effective indentation force, friction, and total tip-sample interactions. Single-point SNMP evaluation, discrete 2D SNMP imaging, and continuous omnidirectional 3D SNMP mapping of a 3D microarray unit verify the accurate and comprehensive measurement abilities of the reported method in its bending, torsion, and vector tracking modes. The experimental results demonstrate that this method can achieve excellent 3D quantitative characterization of topography and SNMP, including critical dimensions, adhesion, Young's modulus, stiffness, and energy dissipation, along a 3D device surface. This novel 3D FD-AFM technique has many potential applications in the further exploration of 3D micro-nano devices.

14.
Inorg Chem ; 62(28): 10892-10896, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37384569

Metal sulfides with diamond-like (DL) structures generally exhibit excellent mid-IR nonlinear-optical (NLO) properties. Here, Cu2GeS3 (CGS) as a member of the DL chalcogenides was synthesized by a high-temperature solid-state method, and the optical properties were carefully studied experimentally and theoretically. The results revealed that CGS has a large second harmonic generation (0.8 × AgGaSe2) and a moderate birefringence of 0.067 at 1064 nm. In addition, the linear and NLO properties of the A2MS3 (A = Cu, Li; M = Ge, Si) series of compounds were evaluated and compared with the help of first-principles calculations.

15.
Food Chem X ; 18: 100679, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37179978

D2O-assisted moisture analysis of edible oils was investigated. The acetonitrile extract of the oil samples was split into two parts. The spectrum of one part was taken as is, another was recorded after addition of excess D2O. Changes in spectral absorption of the H-O-H bending band (1600-1660 cm-1) was used to calculate moisture in oil samples. To effectively depleting absorption of water in the acetonitrile extract, a 30-fold excess of D2O is required. The typical OH-containing constituents in oil did not show significant interference on the H/D exchange. Validation experiments by using five oils with five levels of moisture spiked (50-1000 µg/g) suggested that the prediction tracked the spiked amounts well. The results of variance analysis indicate that there is no difference in terms of analytical methods and oil types used (p < 0.001). The D2O method developed is generally applicable to the accurate analysis of moisture at trace levels (<100 µg/g) in edible oils.

16.
Front Endocrinol (Lausanne) ; 14: 1107511, 2023.
Article En | MEDLINE | ID: mdl-37051201

Background: While osteoimmunology interactions between the immune and skeletal systems are known to play an important role in osteoblast development, differentiation and bone metabolism related disease like osteoporosis, such interactions in either bone microenvironment or peripheral circulation in vivo at the single-cell resolution have not yet been characterized. Methods: We explored the osteoimmunology communications between immune cells and osteoblastic lineage cells (OBCs) by performing CellphoneDB and CellChat analyses with single-cell RNA sequencing (scRNA-seq) data from human femoral head. We also explored the osteoimmunology effects of immune cells in peripheral circulation on skeletal phenotypes. We used a scRNA-seq dataset of peripheral blood monocytes (PBMs) to perform deconvolution analysis. Then weighted gene co-expression network analysis (WGCNA) was used to identify monocyte subtype-specific subnetworks. We next used cell-specific network (CSN) and the least absolute shrinkage and selection operator (LASSO) to analyze the correlation of a gene subnetwork identified by WGCNA with bone mineral density (BMD). Results: We constructed immune cell and OBC communication networks and further identified L-R genes, such as JAG1 and NOTCH1/2, with ossification related functions. We also found a Mono4 related subnetwork that may relate to BMD variation in both older males and postmenopausal female subjects. Conclusions: This is the first study to identify numerous ligand-receptor pairs that likely mediate signals between immune cells and osteoblastic lineage cells. This establishes a foundation to reveal advanced and in-depth osteoimmunology interactions to better understand the relationship between local bone microenvironment and immune cells in peripheral blood and the impact on bone phenotypes.


Bone and Bones , Osteoporosis , Female , Humans , Bone Density/genetics , Osteoporosis/genetics , Gene Expression Profiling , Sequence Analysis, RNA
17.
J Food Sci ; 88(4): 1420-1429, 2023 Apr.
Article En | MEDLINE | ID: mdl-36880580

Whey protein concentrate-based high-protein nutrition bars (WPC-based HPN bars) are prone to hardening during storage, which limits their shelf life. In this study, zein was introduced to partially substitute WPC in the WPC-based HPN bars. The result of storage experiment revealed that the hardening of WPC-based HPN bars was significantly reduced with increasing zein content from 0% to 20% (mass ratio, zein:WPC-based HPN bar). Subsequently, the possible anti-hardening mechanism of zein substitution was studied in detail by determining the change in microstructure, patterns, free sulfhydryl group, color, free amino group, and Fourier transform infrared spectra of WPC-based HPN bars during storage. The results showed that zein substitution significantly blocked protein aggregation by inhibiting cross-linking, the Maillard reaction, and protein secondary structure transformation from α-helix to ß-sheet, which reduced the hardening of WPC-based HPN bars. This work provides insight into the potential utilization of zein substitution to improve the quality and shelf life of WPC-based HPN bars. PRACTICAL APPLICATION: In the preparation of whey protein concentrate-based high-protein nutrition bars, the introduction of zein to partially replace WPC can effectively reduce the hardening of WPC-based HPN bars during storage by preventing protein aggregation between WPC macromolecules. Therefore, zein could act as an agent to reduce the hardening of WPC-based HPN bars.


Milk Proteins , Zein , Whey Proteins/pharmacology , Milk Proteins/chemistry , Protein Aggregates , Maillard Reaction
18.
Heliyon ; 9(2): e12424, 2023 Feb.
Article En | MEDLINE | ID: mdl-36755610

Background: As an increasingly popular complementary and alternative approach for early detection and treatment of disease, traditional Chinese medicine constitution (TCMC) divides human beings into those with balanced constitution (BC) and unbalanced constitution, where damp-heat constitution (DHC) is one of the most unbalanced constitutions. Many studies have been carried out on the microscopic mechanism of constitution classification; however, most of these studies were conducted in adults and rarely in infants. Many diseases are closely related to intestinal microbiota, and metabolites produced by the interaction between microbiota and the body may impact constitution classification. Herein, we investigated the overall constitution distribution in Chinese infants, and analyzed the profiles of gut microbiota and urine metabolites of DHC to further promote the understanding of infants constitution classification. Methods: General information was collected and TCMC was evaluated by Constitutional Medicine Questionnaires. 1315 questionnaires were received in a cross-sectional study to investigate the constitution composition in Chinese infants. A total of 56 infants, including 30 DHC and 26 BC, were randomly selected to analyze gut microbiota by 16S rRNA sequencing and urine metabolites by UPLC-Q-TOF/MS method. Results: BC was the most common constitution in Chinese infants, DHC was the second common constitution. The gut microbiota and urine metabolites in the DHC group showed different composition compared to the BC group. Four differential genera and twenty differential metabolites were identified. In addition, the combined marker composed of four metabolites may have the high potential to discriminate DHC from BC with an AUC of 0.765. Conclusions: The study revealed the systematic differences in the gut microbiota and urine metabolites between infants with DHC and BC. Moreover, the differential microbiota and metabolites may offer objective evidences for constitution classification.

19.
Food Chem ; 414: 135681, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-36827778

Emulsification is the practical limitation of aqueous enzymatic extractions of Camellia oils. This study aimed to investigate the influence and demulsification mechanisms of isopropanol ultrasonic pretreatments and Ca2+ additions on aqueous enzymatic extractions of Camellia oils. Combining isopropanol ultrasonic pretreatments with Ca2+ flow additions obtained the highest free oil recovery (78.03 %) and lowest emulsion content (1.5 %). Results indicated that the superior demulsification performance originated from the decrease in emulsion stabilities and formations. First, demulsification pretreatments reduced the oil (14.69 %) and solid (13.21 %) fractions in emulsions to decrease the stability of as-formed emulsions. Meanwhile, isopropanol ultrasonic pretreatments extracted tea saponins (0.38 mg/mL) and polysaccharides (0.23 mg/mL), while Ca2+ combined with protein isolates (5.82 mg/mL), tea saponins (7.48 mg/mL) and polysaccharides (0.78 mg/mL) to form precipitates and reduce emulsion formation. This work could promote the practical application of aqueous enzymatic extractions of Camellia oils and enlighten the rise of advanced demulsification pretreatments.


Camellia , Camellia/metabolism , 2-Propanol , Plant Oils/metabolism , Emulsions , Ultrasonics , Seeds/metabolism , Tea
20.
Hum Genomics ; 17(1): 11, 2023 02 15.
Article En | MEDLINE | ID: mdl-36793138

BACKGROUND: While transcription factor (TF) regulation is known to play an important role in osteoblast development, differentiation, and bone metabolism, the molecular features of TFs in human osteoblasts at the single-cell resolution level have not yet been characterized. Here, we identified modules (regulons) of co-regulated genes by applying single-cell regulatory network inference and clustering to the single-cell RNA sequencing profiles of human osteoblasts. We also performed cell-specific network (CSN) analysis, reconstructed regulon activity-based osteoblast development trajectories, and validated the functions of important regulons both in vivo and in vitro. RESULTS: We identified four cell clusters: preosteoblast-S1, preosteoblast-S2, intermediate osteoblasts, and mature osteoblasts. CSN analysis results and regulon activity-based osteoblast development trajectories revealed cell development and functional state changes of osteoblasts. CREM and FOSL2 regulons were mainly active in preosteoblast-S1, FOXC2 regulons were mainly active in intermediate osteoblast, and RUNX2 and CREB3L1 regulons were most active in mature osteoblasts. CONCLUSIONS: This is the first study to describe the unique features of human osteoblasts in vivo based on cellular regulon active landscapes. Functional state changes of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 regulons regarding immunity, cell proliferation, and differentiation identified the important cell stages or subtypes that may be predominantly affected by bone metabolism disorders. These findings may lead to a deeper understanding of the mechanisms underlying bone metabolism and associated diseases.


Osteoblasts , Regulon , Humans , Cell Differentiation/genetics , Gene Expression Regulation , Osteoblasts/metabolism , Regulon/genetics
...