Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
AAPS J ; 26(4): 76, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955873

ABSTRACT

The selection of skin is crucial for the in vitro permeation test (IVPT). The purpose of this study was to investigate the influence of different freezing-thawing processes on the barrier function of skin and the transdermal permeability of granisetron and lidocaine. Rat and hairless mouse skins were thawed at three different conditions after being frozen at -20℃ for 9 days: thawed at 4℃, room temperature (RT), and 32℃. There were no significant differences in the steady-state fluxes of drugs between fresh and thawed samples, but compared with fresh skin there were significant differences in lag time for the permeation of granisetron in rat skins thawed at RT and 32℃. Histological research and scanning electron microscopy images showed no obvious structural damage on frozen/thawed skin, while immunohistochemical staining and enzyme-linked immunosorbent assay for the tight junction (TJ) protein Cldn-1 showed significantly impaired epidermal barrier. It was concluded that the freezing-thawing process increases the diffusion rate of hydrophilic drugs partly due to the functional degradation of TJs. It's recommended that hairless, inbred strains and identical animal donors should be used, and the selected thawing method of skin should be validated prior to IVPT, especially for hydrophilic drugs.


Subject(s)
Freezing , Mice, Hairless , Permeability , Skin Absorption , Skin , Animals , Skin/metabolism , Mice , Skin Absorption/drug effects , Rats , Male , Administration, Cutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacokinetics , Rats, Sprague-Dawley
2.
Front Endocrinol (Lausanne) ; 15: 1289923, 2024.
Article in English | MEDLINE | ID: mdl-38978630

ABSTRACT

Objective: It is well known that macro-thyroid-stimulating hormone (macro-TSH) could interfere with the detection of TSH. The anti-TSH autoantibody is an essential component of macro-TSH. However, the epidemiological characteristics and the clinical interference of the anti-TSH autoantibody are unclear. Methods: In this study, the radioimmunoprecipitation technique was used to detect the anti-TSH autoantibody. Platforms with different detection mechanisms were applied to measure the TSH in patients with the anti-TSH autoantibody. Polyethylene glycol (PEG) precipitation was used to determine the immunoassay interference. Results: The prevalence of the anti-TSH autoantibody in patients with mild subclinical hypothyroidism (SCH) and autoimmune thyroiditis, but normal thyroid function, was 4.78%. All 10 patients with anti-TSH antibodies had autoimmune diseases, with five of them having significant clinical test interference. Conclusion: The appearance of the anti-TSH antibody is not associated with thyroid autoantibodies. The presence of the anti-TSH autoantibody can interfere with the detection of TSH and can affect clinical diagnosis and treatment.


Subject(s)
Autoantibodies , Hypothyroidism , Thyrotropin , Humans , Autoantibodies/blood , Autoantibodies/immunology , Thyrotropin/blood , Thyrotropin/immunology , Female , Male , Adult , Middle Aged , Hypothyroidism/diagnosis , Hypothyroidism/immunology , Hypothyroidism/blood , Thyroiditis, Autoimmune/immunology , Thyroiditis, Autoimmune/blood , Thyroiditis, Autoimmune/diagnosis , Thyroid Function Tests , Aged , Immunoassay/methods , Radioimmunoprecipitation Assay
3.
Fitoterapia ; 177: 106105, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969273

ABSTRACT

Novel coumarin-piperazine-2(5H)-furanone hybrids 5a-l were efficiently synthesized by introducing a furanone scaffold into coumarin using piperazine as a linker. The cytotoxicity of all hybrids 5a-l were evaluated by MTT assay on human lung cancer A549 cells and normal human lung fibroblast WI-38 cells with cytarabine (CAR) as a positive control. Hybrid 5l (IC50 = 11.28 µM) was the most toxic to A549 cells, 18-fold more toxic than the reference CAR (IC50 = 202.57 µM). Moreover, hybrid 5l (IC50 = 411.93 µM) was less toxic to WI-38 cells, with a much higher selectivity (5l, SI ≈ 37, WI-38/A549) than CAR (SI ≈ 2). Structure-activity relationship analysis showed that both the cytotoxicity against A549 cells and selectivity (WI-38/A549) were greatly improved when the bornyl group was incorporated in the hybrids (5c, 5f, 5i and 5l). Further, hybrid 5l was more toxic and selective against four types of human lung cancer cells (A549, Calu-1, PC-9 and H460; IC50 = 5.72-45.46 µM; SI ≈ 9-72) than three other types of human cancer cells (SK-BR-3, 786-O and SK-OV-3, IC50 = 39.07-130.82 µM; SI ≈ 0-2), showing remarkable specificity. In particular, hybrid 5l (IC50 = 5.72 µM) showed the highest cytotoxicity against H460 cells with the highest selectivity of up to 72 (WI-38/H460). Flow cytometric analysis showed that hybrid 5l induced apoptosis in H460 cells in a concentration-dependent manner. Molecular docking studies revealed a high binding affinity of hybrid 5l with CDK2 protein. Hybrid 5l is expected to be a leading candidate for anti-lung cancer agents.

4.
Chem Commun (Camb) ; 60(51): 6556-6559, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38845407

ABSTRACT

Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.

5.
Sci Rep ; 14(1): 14226, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902401

ABSTRACT

This study aimed to investigate impacts of Omicron infection on cancer patients in China. A retrospective study was conducted, including 347 cancer patients undergoing radiotherapy or chemoradiotherapy between July 2022 and March 2023. Three groups involved: 108 patients without SARS-CoV-2 infection (non-COVID-19 group), 102 patients beginning treatment 10 days after first SARS-CoV-2 infection (≥ 10 days COVID-19 group), and 137 patients beginning treatment less than 10 days after first SARS-CoV-2 infection (< 10 days COVID-19 group). SAA, hsCRP, ALT, etc., were used to assess COVID-19 infection. Serum levels of SAA, hsCRP and IL-6 were all raised in two COVID-19-infected groups (SAA < 0.01, hsCRP < 0.01, IL-6 < 0.05), but PCT, ALT, LDH and HBDH levels were only elevated in ≥ 10 days COVID-19 group (PCT = 0.0478, ALT = 0.0022, LDH = 0.0313, HBDH = 0.0077). Moreover, moderate and severe infected cases were higher in ≥ 10 days COVID-19 group than < 10 days COVID-19 group (12/102 vs 5/137, p = 0.0211), but no significance in myelosuppression and completion rates among three groups. Omicron infection led to inflammation, liver and cardiovascular injury on cancer patients, but delay duration of radiotherapy or chemoradiotherapy after infection did not affect the completion rates and myelosuppression of current therapy. Besides, severity of Omicron infection was even worse among cancer patients who received delayed treatment.


Subject(s)
COVID-19 , Chemoradiotherapy , Neoplasms , SARS-CoV-2 , Humans , COVID-19/therapy , Female , Male , Middle Aged , Neoplasms/radiotherapy , Neoplasms/therapy , Neoplasms/drug therapy , Chemoradiotherapy/adverse effects , Retrospective Studies , Aged , SARS-CoV-2/isolation & purification , Adult , China/epidemiology
6.
Sci Total Environ ; 945: 174066, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897469

ABSTRACT

Double high pollution (DHP) of ozone (O3) and fine particulate matter (PM2.5) has frequently been observed in China in recent years. Numerous studies have speculated that DHP might be related to nitrous acid (HONO), but the chemical mechanism involved remains unclear. Field observation results of DHP in Shanghai indicate that the high concentration of HONO produced by nitrogen dioxide (NO2) heterogeneous reactions under conditions of high temperature and high humidity promotes an increase in PM2.5 and O3 concentrations. The box model combined with field observations to reconstruct pollution events indicates that HONO photolysis generates abundant hydroxyl (OH) radicals that rapidly oxidize volatile organic compounds (VOCs), which in turn accelerates the ROx (OH, hydroperoxyl (HO2), and organic peroxy (RO2) radicals) cycle and causes the accumulation of O3. This elevated O3 along with high concentrations of HONO, produces particulate nitrate (pNO3) by encouraging the NO2 + OH reaction. This process strengthens the chemical coupling between O3 and PM2.5, which can exacerbate the DHP of O3 and PM2.5. Sensitivity analysis of pNO3/O3-NOx-VOCs suggests that under nitrogen oxides (NOx = NO + NO2) reduction conditions, simultaneous control of pNO3 and O3 can be expected to be successfully achieved through emission reduction of alkanes and oxygenated VOCs (OVOCs). Therefore, the present research will facilitate the design of appropriate PM2.5 and O3 control strategies for high HONO concentration conditions, and thus alleviate the current stresses of air pollution.

7.
J Clin Oncol ; : JCO2400731, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822758

ABSTRACT

PURPOSE: Taletrectinib, a highly potent, CNS-active, ROS1 tyrosine kinase inhibitor (TKI), has demonstrated high and durable response rates, high intracranial objective response rate (ORR), prolonged progression-free survival (PFS), and activity against G2032R with a favorable safety profile. We report outcomes from the pivotal TRUST-I study (ClinicalTrials.gov identifier: NCT04395677) of taletrectinib for ROS1+ non-small cell lung cancer in China. METHODS: TRUST-I evaluated TKI-naїve and crizotinib-pretreated patients. The primary end point was confirmed ORR (cORR) by independent review committee; key secondary end points included duration of response (DOR), PFS, and safety. RESULTS: As of November 2023, 173 patients were enrolled (median age, 55 years; 58% female; 73% never smoked; TKI naїve: n = 106; crizotinib pretreated: n = 67). In TKI-naїve patients, cORR and intracranial cORR were 91% and 88%, respectively, and 52% and 73% in crizotinib-pretreated patients. In TKI-naїve patients, median DOR and median PFS were not reached (NR) with 22.1-month and 23.5-month follow-up, respectively. In crizotinib-pretreated patients, the median DOR was 10.6 months (95% CI, 6.3 months to NR; 8.4-month follow-up), and the median PFS was 7.6 months (95% CI, 5.5 to 12.0 months; 9.7-month follow-up). Eight of 12 patients (67%) with G2032R mutations responded. The most frequent treatment-emergent adverse events (TEAEs) were increased AST (76%), diarrhea (70%), and increased ALT (68%), most of which were grade 1-2. Incidences of neurologic TEAEs were low (dizziness: 23%; dysgeusia: 10%) and mostly grade 1. Discontinuations (5%) and dose reductions (19%) due to TEAEs were low. CONCLUSION: Taletrectinib continues to show high and durable overall responses, prolonged PFS, robust activity against intracranial lesions and acquired resistance mutations including G2032R, and a favorable safety profile with a low incidence of neurologic TEAEs.

8.
Chem Biodivers ; : e202401179, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808458

ABSTRACT

Natural polybrominated diphenyl ethers are generally isolated from sponges and possess a broad range of biological activities. Through screening of our marine natural product library, we discovered that polybrominated diphenyl ethers 5 and 6 exhibit considerable anti-inflammatory activity. In order to expand our repertoire of derivatives for further biological activity studies, we designed and synthesized a series of 5-related polybrominated diphenyl ethers. Importantly, compound 5a showed comparable anti-inflammatory activity while much lower cytotoxicity on lipopolysaccharide (LPS)-induced RAW264.7 cells. Additionally, western blotting analysis showed that 5a reduced the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). Besides, molecular docking experiments were conducted to predict and elucidate the potential mechanisms underlying the varying anti-inflammatory activities exhibited by compounds 5a, 5, and 6.

9.
J Am Chem Soc ; 146(19): 13191-13200, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38603609

ABSTRACT

Conventional solid ion channel systems relying on single one- or two-dimensional confined nanochannels enabled selective and ultrafast convective ion transport. However, due to intrinsic solid channel stacking, these systems often face pore-pore polarization and ion concentration blockage, thereby restricting their efficiency in macroscale ion transport. Here, we constructed a soft heterolayer-gel system that integrated an ion-selective hydrogel layer with a water-barrier organogel layer, achieving ultrahigh cation selectivity and flux and effectively providing high-efficiency gradient energy conversion on a macroscale order of magnitude. Specifically, the hydrogel layer featured an unconfined 3D network, where the fluctuations of highly hydrated polyelectrolyte chains driven by thermal dynamics enhanced cation selectivity and mitigated transfer energy barriers. Such chain fluctuation mechanisms facilitated ion-cluster internal transmission, thereby enhancing ion concentration hopping for more efficient ion-selective transport. Compared to the existing rigid nanochannel-based gradient energy conversion systems, such a heterogel-based power generator exhibited a record power density of 192.90 and 1.07 W/m2 at the square micrometer scale and square centimeter scale, respectively (under a 500-fold artificial solution). We anticipate that such heterolayer gels would be a promising candidate for energy separation and storage applications.

10.
Clin Rheumatol ; 43(5): 1551-1558, 2024 May.
Article in English | MEDLINE | ID: mdl-38578510

ABSTRACT

OBJECTIVE: To identify risk factors for the development of non-thyroidal illness syndrome (NTIS) in patients with systemic lupus erythematosus (SLE). METHODS: A retrospective analysis of 517 SLE patients and 1034 age-and sex-matched healthy population was conducted to compare the prevalence of NTIS in these two groups, and to analyze the laboratory and clinical characteristics of SLE patients with NTIS. Finally Logistic regression analysis was used to determine the risk factors for NTIS in SLE patients. RESULTS: The prevalence of NTIS in the SLE patients was significantly higher than that in controls (39.7% vs. 1.0%, P < 0.001). In SLE patients, compared with euthyroidism patients, NTIS patients exhibited higher levels of neutrophils, hepatic enzymes, kidney damage markers, inflammatory markers and SLE disease activity index (SLEDAI). They also had a higher incidence of organ insufficiency and positive antibodies such as anti-ds-DNA antibodies and anti-SSA antibodies. However, NTIS patients had lower levels of hemoglobin, lymphocytes, platelets, serum albumin, and complement. Additionally, NTIS patients had a shorter duration of lupus and lower utilization of disease-modifying antirheumatic drugs (DMARDs) (P < 0.05). Logistic regression analysis showed that elevated SLEDAI (OR = 1.060, 95%CI 1.022-1.099, P = 0.002), elevated systemic immune-inflammation index (SII) (OR = 1.003, 95%CI 1.001-1.007, P = 0.026), elevated erythrocyte sedimentation rate (ESR) (OR = 1.019, 95%CI 1.010-1.028, P < 0.001), and hepatic insufficiency (OR = 1.916, 95% CI 1.173-3.131, P = 0.009) were independent risk factors for the development of NTIS in SLE. DMARDs treatment (OR = 0.495, 95% CI 0.306-0.799, P < 0.001) was an independent protective factor for NTIS. CONCLUSIONS: Inflammatory activity in SLE patients is associated with the development of NTIS. Key Points • Inflammatory activity indexes such as SLEDAI, SII, and ESR are independent risk factors for NTIS in SLE patients.


Subject(s)
Antirheumatic Agents , Lupus Erythematosus, Systemic , Humans , Retrospective Studies , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/epidemiology , Inflammation/complications , Lymphocytes , Antirheumatic Agents/therapeutic use , Severity of Illness Index
11.
Acta Pharmacol Sin ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589685

ABSTRACT

Excessive acetaminophen (APAP) can induce neutrophil activation and hepatocyte death. Along with hepatocyte dysfunction and death, NETosis (a form of neutrophil-associated inflammation) plays a vital role in the progression of acute liver injury (ALI) induced by APAP overdose. It has been shown that activated neutrophils tend to migrate towards the site of injury and participate in inflammatory processes via formation of neutrophil extracellular traps (NETs). In this study we investigated whether NETs were involved in hepatocyte injury and contributed to APAP-induced ALI progression. ALI mouse model was established by injecting overdose (350 mg/kg) of APAP. After 24 h, blood and livers were harvested for analyses. We showed that excessive APAP induced multiple programmed cell deaths of hepatocytes including pyroptosis, apoptosis and necroptosis, accompanied by significantly increased NETs markers (MPO, citH3) in the liver tissue and serum. Preinjection of DNase1 (10 U, i.p.) for two consecutive days significantly inhibited NETs formation, reduced PANoptosis and consequently alleviated excessive APAP-induced ALI. In order to clarify the communication between hepatocytes and neutrophils, we induced NETs formation in isolated neutrophils, and treated HepaRG cells with NETs. We found that NETs treatment markedly increased the activation of GSDMD, caspase-3 and MLKL, while pre-treatment with DNase1 down-regulated the expression of these proteins. Knockdown of AIM2 (a cytosolic innate immune receptor) abolished NETs-induced PANoptosis in HepaRG cells. Furthermore, excessive APAP-associated ALI was significantly attenuated in AIM2KO mice, and PANoptosis occurred less frequently. Upon restoring AIM2 expression in AIM2KO mice using AAV9 virus, both hepatic injury and PANoptosis was aggravated. In addition, we demonstrated that excessive APAP stimulated mtROS production and mitochondrial DNA (mtDNA) leakage, and mtDNA activated the TLR9 pathway to promote NETs formation. Our results uncover a novel mechanism of NETs and PANoptosis in APAP-associated ALI, which might serve as a therapeutic target.

12.
Front Oncol ; 14: 1350914, 2024.
Article in English | MEDLINE | ID: mdl-38571506

ABSTRACT

Background: The primary objective of this research is to devise a model to predict the pathologic complete response in esophageal squamous cell carcinoma (ESCC) patients undergoing neoadjuvant immunotherapy combined with chemoradiotherapy (nICRT). Methods: We retrospectively analyzed data from 60 ESCC patients who received nICRT between 2019 and 2023. These patients were divided into two cohorts: pCR-group (N = 28) and non-pCR group (N = 32). Radiomic features, discerned from the primary tumor region across plain, arterial, and venous phases of CT, and pertinent laboratory data were documented at two intervals: pre-treatment and preoperation. Concurrently, related clinical data was amassed. Feature selection was facilitated using the Extreme Gradient Boosting (XGBoost) algorithm, with model validation conducted via fivefold cross-validation. The model's discriminating capability was evaluated using the area under the receiver operating characteristic curve (AUC). Additionally, the clinical applicability of the clinical-radiomic model was appraised through decision curve analysis (DCA). Results: The clinical-radiomic model incorporated seven significant markers: postHALP, ΔHB, post-ALB, firstorder_Skewness, GLCM_DifferenceAverage, GLCM_JointEntropy, GLDM_DependenceEntropy, and NGTDM_Complexity, to predict pCR. The XGBoost algorithm rendered an accuracy of 0.87 and an AUC of 0.84. Notably, the joint omics approach superseded the performance of solely radiomic or clinical model. The DCA further cemented the robust clinical utility of our clinical-radiomic model. Conclusion: This study successfully formulated and validated a union omics methodology for anticipating the therapeutic outcomes of nICRT followed by radical surgical resection. Such insights are invaluable for clinicians in identifying potential nICRT responders among ESCC patients and tailoring optimal individualized treatment plans.

13.
Clin Transl Oncol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637357

ABSTRACT

PURPOSE: Despite the generally favourable prognoses observed in patients with ALK-positive non-small cell lung cancer (NSCLC), there remains significant variability in clinical outcomes. The objective of this study is to enhance patient stratification by examining both the specific sites of gene fusion and the presence of co-occurring mutations. METHODS: We collected retrospective clinical and pathological data on ALK-positive patients with locally advanced or metastatic disease. ALK fusion variants and concomitant mutations were identified through next-generation sequencing technology. We then assessed treatment efficacy via tumor response and survival metrics. RESULTS: This study included a total of 59 patients, with 49 harboring echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusions and 10 presenting with rare fusions. The median follow-up period was 33 months. Clinical outcomes between non-EML4-ALK and EML4-ALK patients were comparable. Among the EML4-ALK cohort, patients with longer variants (v1, v2, v8) demonstrated superior progression-free survival (PFS) (median PFS: 34 months vs. 11 months; hazard ratio [HR]: 2.28; P = 0.05) compared to those with shorter variants (v3, v5). Furthermore, patients treated with second-generation ALK inhibitors (ALKi) displayed a progression-free survival advantage (median PFS: not reached [NR] vs. 9 months; HR: 5.37; P = 0.013). Baseline TP53 co-mutation were linked with a substantially shorter OS (median OS,37 months vs. NR; HR 2.74; P = 0.047). CONCLUSIONS: In ALK+ NSCLC, longer EML4-ALK variants correlate with improved prognosis and enhanced response to second-generation ALKi, while TP53 co-mutations indicate a negative prognosis.

14.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1579-1586, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621942

ABSTRACT

This study aims to investigate the effects of Gualou Xiebai Banxia Decoction(GXBD) on type 2 diabetes mellitus(T2DM) combined with acute myocardial infarction(AMI) in rats via chemerin/chemokine-like receptor 1(CMKLR1)/peroxisome proliferator-activated receptor α(PPARα) signaling pathway, and to explore the mechanism of GXBD in alleviating glucose and lipid metabolism disorders. The SD rats were randomized into control, model, positive control, and low-and high-dose GXBD groups. The rat model of T2DM was established by administration with high-fat emulsion(HFE) by gavage and intraperitoneal injection with streptozotocin, and then coronary artery ligation was performed to induce AMI. The control and model groups were administrated with the equal volume of normal saline, and other groups were administrated with corresponding drugs by gavage. Changes in relevant metabolic indicators were assessed by ELISA and biochemical assays, and the protein levels of chemerin, CMKLR1, and PPARα in the liver, abdominal fat, and heart were determined by Western blot. The results showed that GXBD alleviated the myocardial damage and reduced the levels of blood lipids, myocardial enzymes, and inflammatory cytokines, while it did not lead to significant changes in blood glucose. Compared with the model group, GXBD down-regulated the expression of chemerin in peripheral blood and up-regulated the expression of cyclic adenosine monophosphate(cAMP) and protein kinase A(PKA) in the liver. After treatment with GXBD, the protein levels of chemerin and CMKLR1 in the liver, abdominal fat, and heart were down-regulated, while the protein levels of PPARα in the liver and abdominal fat were up-regulated. In conclusion, GXBD significantly ameliorated the disorders of glycolipid metabolism in the T2DM-AMI model by regulating the chemerin/CMKLR1/PPARα signaling pathway to exert a protective effect on the damaged myocardium. This study provides a theoretical basis for further clinical study of GXBD against T2DM-AMI and is a manifestation of TCM treatment of phlegm and turbidity causing obstruction at the protein level.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Myocardial Infarction , Rats , Animals , PPAR alpha/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Rats, Sprague-Dawley , Signal Transduction , Myocardial Infarction/drug therapy , Chemokines
15.
J Org Chem ; 89(9): 6494-6505, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38634729

ABSTRACT

Herein, a novel and practical methodology for the photoinduced decarboxylative difluoroalkylation and perfluoroalkylation of α-fluoroacrylic acids is reported. A wide range of α-fluoroacrylic acids can be used as applicable feedstocks, allowing for rapid access to structurally important difluoroalkylated and polyfluoroalkylated monofluoroalkenes with high Z-stereoselectivity under mild conditions. The protocol demonstrates excellent functional group compatibility and provides a platform for modifying complex biologically active molecules.

16.
New Phytol ; 242(5): 2043-2058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38515251

ABSTRACT

MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees.


Subject(s)
Adaptation, Physiological , Droughts , Gene Expression Regulation, Plant , Glutathione Transferase , MicroRNAs , Plant Proteins , Populus , Reactive Oxygen Species , Populus/genetics , Populus/physiology , Populus/enzymology , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Adaptation, Physiological/genetics , Plants, Genetically Modified , Stress, Physiological/genetics , Free Radical Scavengers/metabolism , Base Sequence , Genes, Plant , Promoter Regions, Genetic/genetics , Drought Resistance
17.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542856

ABSTRACT

Coordination cages sustained by metal-ligand interactions feature polyhedral architectures and well-defined hollow structures, which have attracted significant attention in recent years due to a variety of structure-guided promising applications. Sulfonylcalix[4]arenes-based coordination cages, termed metal-organic supercontainers (MOSCs), that possess unique multi-pore architectures containing an endo cavity and multiple exo cavities, are emerging as a new family of coordination cages. The well-defined built-in multiple binding domains of MOSCs allow the efficient encapsulation of guest molecules, especially for drug delivery. Here, we critically discuss the design strategy, and, most importantly, the recent advances in research surrounding cavity-specified host-guest chemistry and biomedical applications of MOSCs.

18.
Sci Adv ; 10(10): eadl2737, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457508

ABSTRACT

Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.

19.
RSC Med Chem ; 15(3): 848-855, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516604

ABSTRACT

Novel rhein-piperazine-furanone hybrids, 5, were designed and synthesized efficiently from rhein. Cytotoxicity of all hybrids 5a-j against A549 human lung cancer cells was superior to the parent rhein and the reference cytarabine (CAR). Hybrid 5e (IC50 = 5.74 µM), the most potent compound, was 46- and 35-fold more toxic against A549 cells than rhein (IC50 = 265.59 µM) and CAR (IC50 = 202.57 µM), respectively. Moreover, hybrid 5e (IC50 = 69.28 µM) was less toxic to normal WI-38 human lung fibroblast cells with good selectivity (WI-38/A549, SI ≈ 12), being much higher than rhein (SI ≈ 1) and CAR (SI ≈ 2). Structure-activity relationship (SAR) analysis showed that cytotoxicity and selectivity against A549 lung cancer cells were greatly enhanced when methoxy-containing furanone was introduced to the hybrids (5e and 5h). Further, hybrid 5e showed better cytotoxicity against four types of human lung cancer cells (H460, A549, PC-9, and Calu-1; IC50 = 4.35-15.39 µM) than six other types of human cancer cells (SK-BR-3, SK-OV-3, 786-O, Huh-7, HCT116, and HeLa; IC50 = 13.77-60.45 µM), showing specificity. In particular, hybrid 5e showed the highest cytotoxicity (IC50 = 4.35 µM) and the highest selectivity (WI-38/H460, SI ≈ 16) against H460 human lung cancer cells. Flow cytometric analysis showed that hybrid 5e induced apoptosis in a concentration-dependent manner in H460 cells. The results show that the cytotoxicity and selectivity of rhein can be greatly enhanced by hybridization with furanone. Hybrid 5e is expected to be a leading candidate for anti-lung cancer drugs.

20.
Plant Dis ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416046

ABSTRACT

Forever Summer Hydrangea (Hydrangea macrophylla) is a common flowering plant in the Yangtze River Valley area of China, and it is widely cultivated globally (Chen et al. 2015). In July 2023, H. macrophylla leaves exhibiting visible diseased lesions were reported in a nursery in Wuhu, Anhui Province, China. The incidence reached 40% in a 0.2 ha area. The primary disease symptom was multiple irregular necrotic spots (0.5 to 1 mm in diameter) appearing on the leaves. These spots on the leaves were faded yellow around the perimeter and grayish brown in the center.). 15 leaf samples were sterilized with 75% alcohol and rinsed three times in sterile distilled water, then transferred to antibiotic-added potato dextrose agar (PDA) for incubation at 27°C. The colonies were fluffy, flocculent, or hairy, dark green, gray-green to gray-brown in color, and spreading or protruding punctate with a colorless halo on PDA. The conidiophores were brown to dark brown, smooth or rough surface, mostly unbranched, clearly differentiated, erect or curved. The conidia displayed a light brown to brown hue, lemon shape, fusiform, elongated ellipsoid or others with obvious spore markings and spore umbilicus. Genomic DNA was extracted from fungal colonies on infected leaves of three collections separately (Braun et al. 2003) and the internal transcribed spacer regions (ITS), actin (ACT) genes and partial translation elongation factor-l-alpha (EF) were amplified and sequenced using the primers ITS1/4 (Yin et al. 2012), ACT-512F/ACT-783R and EF 1-728F/986R (Carbone and Kohn 1999), respectively. DNA sequences of isolates were identical and deposited in GenBank (accession no. OR362754 for ITS, OR611929 for ACT and PP209106 for EF). The consensus sequences from ITS, EF and ACT showed 100%, 98.98% and 100% identical to Cladosporium strains (accession no. OQ186140.1, MT154169.1 and OL322092.1), respectively. To confirm the pathogenicity of the isolates, hydrangeas were planted in 15-cm pots containing commercial potting mix (one plant/pot). Three healthy plants were inoculated at the five to eight leaf stage by spraying 50 µL of the isolate conidial suspension (4 × 106 spores/mL) on healthy leaves. Three plants treated with sterile distilled water were used as controls. After inoculation, all plants were placed in a humidity chamber (>95% relative humidity, 26°C) for 48 h and then transferred to a greenhouse at 22/27°C. All inoculated leaves exhibited symptoms similar to those observed in the nursery 10 days after inoculation, while no symptoms were observed for control leaves. The fungus was re-isolated and confirmed to be C. tenuissimum. Based on the above morphological characterization and molecular identification, the causal agent for this leaf spot disease was identified as C. tenuissimum. Although C. tenuissimum has been reported to cause disease on H. paniculata in northern China (Li et al.2021), this is the first time that C. tenuissimum has been found on H. macrophylla in southern China. This new disease of H. macrophylla caused by C. tenuissimum is a threat to urban greening and is worth further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...