Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.025
1.
Cell Mol Biol Lett ; 29(1): 81, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816685

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.


Dendritic Cells , Sepsis , Dendritic Cells/immunology , Sepsis/immunology , Sepsis/pathology , Humans , Animals , Regulated Cell Death , Autophagy , Apoptosis , Pyroptosis
2.
Sci Adv ; 10(22): eadk9928, 2024 May 31.
Article En | MEDLINE | ID: mdl-38820158

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.

3.
Front Immunol ; 15: 1395047, 2024.
Article En | MEDLINE | ID: mdl-38694500

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Cellular Senescence , Drug Resistance, Neoplasm , Prostatic Neoplasms , Humans , Cellular Senescence/drug effects , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Animals
4.
Anal Chem ; 96(21): 8501-8509, 2024 May 28.
Article En | MEDLINE | ID: mdl-38717985

Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges. The sensor consists of two fluorescent units targeting sphingomyelin and cholesterol, connected by a linker that responds to the proximity of these lipids. In rigid membranes, cholesterol and sphingomyelin are in close proximity, leading to an increased FRET signal. We utilized this sensor in combination with confocal microscopy to explore changes in plasma membrane stiffness under various conditions, including differences in osmotic pressure, the presence of reactive oxygen species (ROS) and variations in substrate stiffness. Furthermore, we explored the impact of SARS-CoV-2 on membrane stiffness and the distribution of ACE2 after attachment to the cell membrane. This tool offers substantial potential for future investigations in the field of mechanobiology.


Cell Membrane , Cholesterol , Fluorescence Resonance Energy Transfer , SARS-CoV-2 , Sphingomyelins , Fluorescence Resonance Energy Transfer/methods , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Sphingomyelins/analysis , Sphingomyelins/metabolism , Cholesterol/analysis , Cholesterol/metabolism , Microscopy, Confocal/methods , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Biosensing Techniques/methods
5.
Biomolecules ; 14(5)2024 May 12.
Article En | MEDLINE | ID: mdl-38785979

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Neoplasms , Ubiquitin Thiolesterase , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/enzymology , Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Ubiquitination , Inflammation/metabolism , Signal Transduction , Ubiquitin/metabolism
6.
World J Psychiatry ; 14(5): 704-714, 2024 May 19.
Article En | MEDLINE | ID: mdl-38808084

BACKGROUND: Healthcare workers (HCWs) are at increased risk of contracting coronavirus disease 2019 (COVID-19) as well as worsening mental health problems and insomnia. These problems can persist for a long period, even after the pandemic. However, less is known about this topic. AIM: To analyze mental health, insomnia problems, and their influencing factors in HCWs after the COVID-19 pandemic. METHODS: This multicenter cross-sectional, hospital-based study was conducted from June 1, 2023 to June 30, 2023, which was a half-year after the end of the COVID-19 emergency. Region-stratified population-based cluster sampling was applied at the provincial level for Chinese HCWs. Symptoms such as anxiety, depression, and insomnia were evaluated by the Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, and Insomnia Severity Index. Factors influencing the symptoms were identified by multivariable logistic regression. RESULTS: A total of 2000 participants were invited, for a response rate of 70.6%. A total of 1412 HCWs [618 (43.8%) doctors, 583 (41.3%) nurses and 211 (14.9%) nonfrontline], 254 (18.0%), 231 (16.4%), and 289 (20.5%) had symptoms of anxiety, depression, and insomnia, respectively; severe symptoms were found in 58 (4.1%), 49 (3.5%), and 111 (7.9%) of the participants. Nurses, female sex, and hospitalization for COVID-19 were risk factors for anxiety, depression, and insomnia symptoms; moreover, death from family or friends was a risk factor for insomnia symptoms. During the COVID-19 outbreak, most [1086 (76.9%)] of the participating HCWs received psychological interventions, while nearly all [994 (70.4%)] of them had received public psychological education. Only 102 (7.2%) of the HCWs received individual counseling from COVID-19. CONCLUSION: Although the mental health and sleep problems of HCWs were relieved after the COVID-19 pandemic, they still faced challenges and greater risks than did the general population. Identifying risk factors would help in providing targeted interventions. In addition, although a major proportion of HCWs have received public psychological education, individual interventions are still insufficient.

7.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Article En | MEDLINE | ID: mdl-38723197

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Methylenetetrahydrofolate Dehydrogenase (NADP) , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Animals , Mice , Reactive Oxygen Species/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Cell Line, Tumor , Homeostasis , Aminohydrolases/metabolism , Aminohydrolases/genetics , Disease Progression , Xenograft Model Antitumor Assays
8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812179

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Drugs, Chinese Herbal , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Animals , Rats , Male , Humans , Liver/drug effects , Liver/chemistry , Liver/metabolism , Mass Spectrometry/methods , Kidney/drug effects , Kidney/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus/drug therapy
9.
Nat Commun ; 15(1): 3125, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38600076

Collective cooperation is essential for many social and biological systems, yet understanding how it evolves remains a challenge. Previous investigations report that the ubiquitous heterogeneous individual connections hinder cooperation by assuming individuals update strategies at identical rates. Here we develop a general framework by allowing individuals to update strategies at personalised rates, and provide the precise mathematical condition under which universal cooperation is favoured. Combining analytical and numerical calculations on synthetic and empirical networks, we find that when individuals' update rates vary inversely with their number of connections, heterogeneous connections actually outperform homogeneous ones in promoting cooperation. This surprising property undercuts the conventional wisdom that heterogeneous structure is generally antagonistic to cooperation and, further helps develop an efficient algorithm OptUpRat to optimise collective cooperation by designing individuals' update rates in any population structure. Our findings provide a unifying framework to understand the interplay between structural heterogeneity, behavioural rhythms, and cooperation.


Biological Evolution , Cooperative Behavior , Humans , Game Theory , Algorithms
10.
Int J Biol Macromol ; 267(Pt 1): 131596, 2024 May.
Article En | MEDLINE | ID: mdl-38621560

Lignocellulose biorefinery depended on effective pretreatment strategies is of great significance for solving the current global crisis of ecosystem and energy security. This study proposes a novel approach combining seawater hydrothermal pretreatment (SHP) and microwave-assisted deep eutectic solvent (MD) pretreatment to achieve an effective fractionation of Pinus massoniana into high value-added products. The results indicated that complex ions (Mg2+, Ca2+, and Cl-) in natural seawater served as Lewis acids and dramatically promoted the depolymerization of mannose and xylan into oligosaccharides with 40.17 % and 75.43 % yields, respectively. Subsequent MD treatment realized a rapid and effective lignin fractionation (~90 %) while retaining cellulose. As a result, the integrated pretreatment yielded ~85 % of enzymatic glucose, indicating an eightfold increase compared with untreated pine. Because of the increased hydrophobicity induced by the formation of acyl groups during MD treatment, uniform lignin nanospheres were successfully recovered from the DES. It exhibited low dispersibility (PDI = 2.23), small molecular weight (1889 g/mol), and excellent oxidation resistance (RSI = 5.94), demonstrating promising applications in functional materials. The mechanism of lignin depolymerization was comprehensively elucidated via FTIR, 2D-HSQC NMR, and GPC analyses. Overall, this study provides a novel and environmentally friendly strategy for lignocellulose biorefinery and lignin valorization.


Deep Eutectic Solvents , Lignin , Nanospheres , Pinus , Seawater , Lignin/chemistry , Pinus/chemistry , Deep Eutectic Solvents/chemistry , Seawater/chemistry , Nanospheres/chemistry , Sugars/chemistry , Fermentation , Microwaves
11.
Bioresour Technol ; 400: 130691, 2024 May.
Article En | MEDLINE | ID: mdl-38599347

Indole acetic acid (IAA) as a plant hormone, was one of the valuable products of anaerobic fermentation. However, the enriching method remained unknown. Moreover, whether zero valent iron (ZVI) could enhance IAA production was unexplored. In this work, IAA producing bacteria Klebsiella (63 %) was enriched successfully. IAA average production rate and concentration were up to 3 mg/L/h and 56 mg/L. With addition of 1 g/L ZVI, IAA average production rate and concentration was increased for 2 and 3 folds. Mechanisms indicated ZVI increased Na+K+-ATP activity and electron transport activity for 2 folds and 1 fold. Moreover, macro transcription determined indole pyruvate pathway activity like primary-amine oxidase, indole pyruvate decarboxylase and aldehyde dehydrogenase were increased for 146 %, 187 %, and 557 %, respectively. Therefore, ZVI was suitable for enhancement IAA production from mixed culture anaerobic fermentation.


Fermentation , Indoleacetic Acids , Iron , Tryptophan , Indoleacetic Acids/metabolism , Tryptophan/metabolism , Anaerobiosis , Iron/metabolism , Klebsiella/metabolism
12.
Article En | MEDLINE | ID: mdl-38573002

Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.

13.
World J Gastroenterol ; 30(12): 1655-1662, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38617735

The gut microbiota is recognized as an endocrine organ with the capacity to influence distant organs and associated biological pathways. Recent advancements underscore the critical role of gut microbial homeostasis in female health; with dysbiosis potentially leading to diseases among women such as polycystic ovarian syndrome, endometriosis, breast cancer, cervical cancer, and ovarian cancer etc. Despite this, there has been limited discussion on the underlying mechanisms. This editorial explores the three potential mechanisms through which gut microbiota dysbiosis may impact the development of diseases among women, namely, the immune system, the gut microbiota-estrogen axis, and the metabolite pathway. We focused on approaches for treating diseases in women by addressing gut microbiota imbalances through probiotics, prebiotics supplementation, and fecal microbiota transplantation (FMT). Future studies should focus on determining the molecular mechanisms underlying associations between dysbiosis of gut microbiota and female diseases to realize precision medicine, with FMT emerging as a promising intervention.


Breast Neoplasms , Endometriosis , Gastrointestinal Microbiome , Female , Humans , Dysbiosis , Estrogens
14.
Article En | MEDLINE | ID: mdl-38638057

OBJECTIVE: The objective of this study is to investigate the effect of different alveolar ridge preservation (ARP) approaches on bone resorption and their potential for facilitating implant placement. MATERIALS AND METHODS: Patients who underwent one or two tooth extractions with a desire for restoration were included in the study. The participants were randomly assigned to one of three groups for ARP. The groups were as follows: (1) Half grafting of bovine bone mineral (DBBM-C) covered with non-resorbable dense polytetrafluoroethylene (dPTFE) membrane (Test 1 group); (2) Half grafting of bovine bone mineral (DBBM-C) covered with collagen membrane (Test 2 group); and (3) Full grafting with collagen membrane (DBBM-C + Collagen membrane) as the Control group. After 6-month healing period, the evaluation encompassed clinical, radiographic, implant-related outcomes, and the factors contributing to hard and soft tissue alterations. RESULTS: Enrollment in this study comprised 56 patients. At the 6-month follow-up, radiographic analysis in computed beam computed tomography images was conducted for 18, 19, and 19 patients with 18, 20, and 20 tooth sites in Test 1, Test 2, and Control groups, respectively. Additionally, a total of 15, 17, and 17 patients with 15, 18, and 17 implants were evaluated. Based on radiographic analysis, all groups showed limited ridge resorption at 1 mm from crest horizontally (Test 1: 1.29 ± 1.37; Test 2: 1.07 ± 1.07; Control: 1.54 ± 1.33 mm, p = 0.328), while the Control group showed greater radiographic bone height gain in mid-crestal part vertically (Test 1: 0.11 ± 1.02; Test 2: 0.29 ± 0.83; Control: -0.46 ± 0.95 mm, p = 0.032). There were no significant intergroup differences in terms of keratinized mucosal width, bone density, insertion torque, and the need of additional bone graft. However, the use of a dPTFE membrane resulted in a significantly higher vertical mucosal thickness (Test 1: 2.67 ± 0.90; Test 2: 3.89 ± 1.08; Control: 2.41 ± 0.51 mm, p < 0.001). CONCLUSIONS: The study showed comparable dimensional preservation with limited vertical shrinkage, while thin buccal bone plate, non-molar sites, and large discrepancy between buccal and palatal/lingual height may contribute to greater shrinkage. Thicker mucosa with dPTFE membrane required further investigation for interpretation. CLINICAL TRIAL REGISTRATION NUMBER: NCT06049823. This clinical trial was not registered prior to participant recruitment and randomization.

15.
Zhongguo Zhong Yao Za Zhi ; 49(4): 932-941, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621900

This study explored the biosynthesis of bufadienolides(BDs) in Bufo bufo gargarizans to solve the dilemma of the decreasing resources of B. bufo gargarizans and provide a theoretical basis for the sustainable utilization of the resources. Ultra-high performance liquid chromatography-Orbitrap-mass spectrometry(UHPLC-Orbitrap-MS) was employed to detect the synthesis sites of BDs in B. bufo gargarizans, and the results were verified by desorption electrospray ionization-mass spectrometry imaging(DESI-MSI) and homogenate incubation experiments. BDs in B. bufo gargarizans had the highest content in the liver and the highest concentration in the gallbladder, in addition to the parotid gland and skin, which suggested that the liver could synthesize BDs. The results of DESI-MSI also showed that BDs were mainly enriched in the liver rather than the immature parotid gland. The incubation experiment of liver homogenates demonstrated the liver of B. bufo gargarizans had the ability to synthesize BDs. This study showed that the liver was a major organ for the synthesis of BDs in B. bufo gargarizans during metamorphosis, development, and growth, which provided strong theoretical support for the biosynthesis of BDs and the sustainable utilization of B. bufo gargarizans resources.


Bufanolides , Animals , Bufo bufo , Tissue Distribution , Bufonidae , Spectrometry, Mass, Electrospray Ionization
16.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1485-1493, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621932

Chuanxiong Rhizoma is a well-known Sichuan-specific herbal medicine. Its original plant, Ligusticum chuanxiong, has been cultivated asexually for a long time. L. chuanxiong has sexual reproductive disorders, which restricts its germplasm innovation. However, there is little research on the reproductive system of L. chuanxiong. This study is based on a comparative anatomical research approach, using morphological dissection, paraffin sectioning, staining and compression, and combined with scanning electron microscopy technology, to observe and compare the flowers, fruits, and seeds at various stages of reproductive growth of L. chuanxiong and its wild relative L. sinense. The results showed that the meiosis of pollen mother cells is abnormal in L. chuanxiong anthers, and the size and number of microspores are uneven and inconsistent in the tetrad stage. tapetum cells are not completely degenerated during anther development. During the pollen ripening stage, there are fine cracks in the anther wall, while most anthers could not release pollen normally. The surface of mature pollen grains is concave and partially deformed, and the pollens are all inactive and cannot germinate in vitro. The starch, polysaccharides, and lipids in the pollen were insufficient. The filaments of L. chuanxiong are short at the flowering stage and recurved downward. Double-hanging fruits were observed in the fruiting stage, being wrinkled; with shriveled seeds. Compared with L. sinense at the same stage, the anthers of L. sinense developed normally, and the pollen grains are vigorous and can germinate in vitro. The double-hanging fruits of L. sinense are full and normal; at the flowering period, the filaments are long and erect, significantly higher than the stigma. Mature blastocysts are visible in the ovary of both L. chuanxiong and L. sinense, and there is no significant difference in stigmas. The conclusion is that during the development of L. chuanxiong stamens, the meiosis of pollen mother cells is abnormal, and tetrad, tapetum, filament and other pollen structures develop abnormally. L. chuanxiong has the characteristic of male infertility, which is an important reason for its sexual reproductive disorders.


Ligusticum , Reproduction , Pollen , Flowers , Polysaccharides
17.
World J Gastroenterol ; 30(9): 1143-1153, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38577185

BACKGROUND: Endoscopic full-thickness resection (EFTR) of gastric submucosal tumors (SMTs) is safe and effective; however, postoperative wound management is equally important. Literature on suturing following EFTR for large (≥ 3 cm) SMTs is scarce and limited. AIM: To evaluate the efficacy and clinical value of double-nylon purse-string suture in closing postoperative wounds following EFTR of large (≥ 3 cm) SMTs. METHODS: We retrospectively analyzed the data of 85 patients with gastric SMTs in the fundus of the stomach or in the lesser curvature of the gastric body whose wounds were treated with double-nylon purse-string sutures after successful tumor resection at the Endoscopy Center of Renmin Hospital of Wuhan University. The operative, postoperative, and follow-up conditions of the patients were evaluated. RESULTS: All tumors were completely resected using EFTR. 36 (42.35%) patients had tumors located in the fundus of the stomach, and 49 (57.65%) had tumors located in the body of the stomach. All patients underwent suturing with double-nylon sutures after EFTR without laparoscopic assistance or further surgical treatment. Postoperative fever and stomach pain were reported in 13 (15.29%) and 14 (16.47%) patients, respectively. No serious adverse events occurred during the intraoperative or postoperative periods. A postoperative review of all patients revealed no residual or recurrent lesions. CONCLUSION: Double-nylon purse-string sutures can be used to successfully close wounds that cannot be completely closed with a single nylon suture, especially for large (≥ 3 cm) EFTR wounds in SMTs.


Endoscopic Mucosal Resection , Stomach Neoplasms , Humans , Nylons , Gastroscopy/adverse effects , Retrospective Studies , Stomach Neoplasms/pathology , Sutures , Treatment Outcome
18.
Pathol Res Pract ; 256: 155287, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579576

The lack of expression of terminal deoxynucleotidyl transferase (TdT) is frequently associated with KMT2A-rearranged subtype of pediatric acute lymphoblastic leukemia (ALL). However, this association has not been investigated extensively in the Asian population. A retrospective analysis of TdT expression in pediatric B-cell ALL (B-ALL) was performed in patients treated using the Taiwan Pediatric Oncology Group (TPOG) ALL 2002 and 2013 protocols. Among the 331 patients with B-ALL, 12 patients showed TdT negativity at initial diagnosis. Among these, eight patients showed KMT2A rearrangement (66.7%). Other patients showing negative TdT expression had ETV6::RUNX1, MEF2D-rearranged, and other B-ALL subtypes. However, in the context of KMT2A-rearranged B-ALL (n = 20), only eight patients showed TdT negativity. The 5-year event-free survival and overall survival of patients with and without TdT expression were 83.8% versus 46.8% (P <0.001) and 86.3% versus 55.4% (P = 0.004), respectively. Moreover, several aberrant markers, such as CD2, CD56, CD7, and CD117, were rarely expressed in the B-ALL samples, and if expressed, they were enriched in specific genetic subtypes. The results of this study indicate that immunophenotypic features are correlated with specific genetic subtypes of childhood B-ALL.


DNA Nucleotidylexotransferase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , DNA Nucleotidylexotransferase/metabolism , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
19.
Exp Hematol Oncol ; 13(1): 47, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664743

Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.

20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674022

The potato dry rot disease caused by Fusarium spp. seriously reduces potato yield and threatens human health. However, potential biocontrol agents cannot guarantee the stability and activity of biocontrol. Here, 18 synthetic microbial communities of different scales were constructed, and the synthetic microbial communities with the best biocontrol effect on potato dry rot disease were screened through in vitro and in vivo experiments. The results show that the synthetic community composed of Paenibacillus amylolyticus, Pseudomonas putida, Acinetobacter calcoaceticus, Serratia proteamaculans, Actinomycetia bacterium and Bacillus subtilis has the best biocontrol activity. Metabolomics results show that Serratia protoamaculans interacts with other member strains to produce caproic acid and reduce the disease index to 38.01%. Furthermore, the mycelial growth inhibition after treatment with caproic acid was 77.54%, and flow cytometry analysis showed that the living conidia rate after treatment with caproic acid was 11.2%. This study provides potential value for the application of synthetic microbial communities in potatoes, as well as the interaction mechanisms between member strains of synthetic microbial communities.


Caproates , Plant Diseases , Solanum tuberosum , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Caproates/pharmacology , Caproates/metabolism , Fusarium/drug effects , Microbiota/drug effects
...