Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Biomech ; 169: 112131, 2024 May.
Article in English | MEDLINE | ID: mdl-38739987

ABSTRACT

Cartilage endplates (CEPs) act as protective mechanical barriers for intervertebral discs (IVDs), yet their heterogeneous structure-function relationships are poorly understood. This study addressed this gap by characterizing and correlating the regional biphasic mechanical properties and biochemical composition of human lumbar CEPs. Samples from central, lateral, anterior, and posterior portions of the disc (n = 8/region) were mechanically tested under confined compression to quantify swelling pressure, equilibrium aggregate modulus, and hydraulic permeability. These properties were correlated with CEP porosity and glycosaminoglycan (s-GAG) content, which were obtained by biochemical assays of the same specimens. Both swelling pressure (142.79 ± 85.89 kPa) and aggregate modulus (1864.10 ± 1240.99 kPa) were found to be regionally dependent (p = 0.0001 and p = 0.0067, respectively) in the CEP and trended lowest in the central location. No significant regional dependence was observed for CEP permeability (1.35 ± 0.97 * 10-16 m4/Ns). Porosity measurements correlated significantly with swelling pressure (r = -0.40, p = 0.0227), aggregate modulus (r = -0.49, p = 0.0046), and permeability (r = 0.36, p = 0.0421), and appeared to be the primary indicator of CEP biphasic mechanical properties. Second harmonic generation microscopy also revealed regional patterns of collagen fiber anchoring, with fibers inserting the CEP perpendicularly in the central region and at off-axial directions in peripheral regions. These results suggest that CEP tissue has regionally dependent mechanical properties which are likely due to the regional variation in porosity and matrix structure. This work advances our understanding of healthy baseline endplate biomechanics and lays a groundwork for further understanding the role of CEPs in IVD degeneration.


Subject(s)
Intervertebral Disc , Lumbar Vertebrae , Humans , Lumbar Vertebrae/physiology , Intervertebral Disc/physiology , Middle Aged , Male , Female , Porosity , Adult , Aged , Glycosaminoglycans/metabolism , Biomechanical Phenomena , Cartilage/physiology , Stress, Mechanical
2.
Macromol Biosci ; : e2400093, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801024

ABSTRACT

Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (Ø > 6 mm) for clinical use, small-diameter vascular grafts (Ø < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.

3.
Polymers (Basel) ; 16(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675074

ABSTRACT

Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully understood. In this study, we unveil such effects by using coarse-grained molecular dynamics simulations to study the crystallization process of a model semicrystalline polymer-polyvinyl alcohol (PVA)-under different levels of nanoconfinement induced by nanoparticles that are represented implicitly. We quantify in detail the evolution of the degree of crystallinity (XC) of PVA and examine distinct crystalline regions from simulation results. The results show that nanoconfinement can promote the crystallization process, especially at the early stage, and the interfaces between nanoparticles and polymer can function as crystallite nucleation sites. In general, the final XC of PVA increases with the levels of nanoconfinement. Further, nanoconfined cases show region-dependent XC with higher and earlier increase of XC in regions closer to the interfaces. By tracking region-dependent XC evolution, our results indicate that nanoconfinement can lead to a heterogenous crystallization process with a second-stage crystallite nucleation in regions further away from the interfaces. In addition, our results show that even under very high cooling rates, the nanoconfinement still promotes the crystallization of PVA. This study provides important insights into the underlying mechanisms for the intricate interplay between nanoconfinement and the crystallization behaviors of semicrystalline polymer, with the potential to guide the design and characterization of semicrystalline polymer-based nanocomposites.

4.
J Appl Mech ; 91(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38449742

ABSTRACT

Natural protective materials offer unparalleled solutions for impact-resistant material designs that are simultaneously lightweight, strong, and tough. Particularly, the Bouligand structure found in the dactyl club of mantis shrimp and the staggered structure in nacre achieve excellent mechanical strength, toughness, and impact resistance. Previous studies have shown that hybrid designs by combining different bioinspired microstructures can lead to enhanced mechanical strength and energy dissipation. Nevertheless, it remains unknown whether combining Bouligand and staggered structures in nanofibrillar cellulose (NFC) films, forming a discontinuous fibrous Bouligand (DFB) architecture, can achieve enhanced impact resistance against projectile penetration. Additionally, the failure mechanisms under such dynamic loading conditions have been minimally understood. In our study, we systematically investigate the dynamic failure mechanisms and quantify the impact resistance of NFC thin films with DFB architecture by leveraging previously developed coarse-grained models and ballistic impact molecular dynamics simulations. We find that when nanofibrils achieve a critical length and form DFB architecture, the impact resistance of NFC films outperforms the counterpart films with continuous fibrils by comparing their specific ballistic limit velocities and penetration energies. We also find that the underlying mechanisms contributing to this improvement include enhanced fibril sliding, intralayer and interlayer crack bridging, and crack twisting in the thickness direction enabled by the DFB architecture. Our results show that by combining Bouligand and staggered structures in NFC films, their potential for protective applications can be further improved. Our findings can provide practical guidelines for the design of protective films made of nanofibrils.

5.
Biomater Sci ; 12(7): 1726-1737, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38357975

ABSTRACT

As a globally prevalent disease, obesity leads to many chronic diseases, so it is important to develop safe and effective treatments with fewer side effects and lasting weight loss. In this study, we developed a biodegradable hyaluronic acid microneedle patch loaded with polydopamine nanoparticles and mirabegron, which directly acted on subcutaneous white adipose tissue, and then induced browning of white adipose tissue through mild photothermal therapy. The approach showed excellent browning-promoting ability and biocompatibility. It is noteworthy that the weight of untreated mice increased by 9%, while the weight of obese mice decreased by nearly 19% after photothermal treatment. In addition, when mirabegron was used in combination with photothermal therapy, the weight loss of obese mice was more significant, with a weight loss of about 22%. This microneedle patch exhibited attractive potential for body slimming.


Subject(s)
Acetanilides , Obesity , Thiazoles , Animals , Mice , Mice, Obese , Obesity/drug therapy , Weight Loss , Mice, Inbred C57BL
6.
Biomater Sci ; 11(11): 3906-3920, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37092601

ABSTRACT

Despite the therapeutic response of ferroptosis in various tumors, ferroptosis resistance has been found in numerous studies, significantly hindering the progress of ferroptosis anti-tumor therapy. Herein, we propose a metal-rich cascade nanosystem (Simvastatin-HMPB-Mn@GOx) combined with the dual-pathway regulation of ferroptosis resistance and photothermal therapy for efficient tumor combination therapy. The manganese-bonded hollow mesoporous Prussian blue (HMPB-Mn) serves as the photothermal agent and metal donor, and dissociates multivalent metal ions Mn2+, Fe3+ and Fe2+ to consume glutathione and amplify the Fenton reaction. Glucose oxidase (GOx) absorbed serves as the converter to provide hydrogen peroxide (H2O2) for the cascade Fenton reaction, causing a high burst of hydroxyl radicals (˙OH) and lipid peroxidation. Simvastatin innovatively acts as a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) inhibitor to decrease the expression of coenzyme Q10 (CoQ10) and glutathione peroxidase 4 (GPX4), eventually defeating ferroptosis resistance. The nanosystem acted in both classical and non-classical ferroptosis pathways and showed significant ferroptosis- and hyperthermia-induced anti-tumor efficacy both in vitro and in vivo. Thus, this study offers a promising way for ferroptosis and phototherapy to achieve complete tumor regression.


Subject(s)
Ferroptosis , Neoplasms , Humans , Hydrogen Peroxide , Combined Modality Therapy , Metals , Neoplasms/drug therapy , Glucose Oxidase
7.
Biomater Sci ; 11(6): 2158-2166, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36734397

ABSTRACT

Blood coagulation is the body's main defense to bleeding caused by trauma and is divided into endogenous and exogenous pathways. Calcium ions play a very important role in the process of blood coagulation, as the ions activate the many enzymes that are required for coagulation. In this paper, gelatin hemostatic membranes containing calcium ions were prepared by electrospinning. The fibers were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The biocompatibility and coagulation processes using the calcium ion-containing gelatin fibrous membranes were evaluated in vitro with dynamic whole-blood coagulation tests, hemolysis tests, coagulation time tests, and platelet adhesion tests. It was demonstrated that the calcium ion-containing gelatin membranes had lower hemolysis rates and shorter clotting times than commercially available hemostatic sponges and hemostatic gauzes. In vivo hemostasis experiments were also conducted on the tail vein and liver of mice. Animal experiments demonstrated that the incorporation of calcium ions into the electrospun gelatin membranes promoted platelet aggregation, ensured adhesion of the electrospun membrane to the wound and reduced the bleeding volume and hemostasis time. The composite calcium ion-gelatin electrospun membranes exhibited good in vivo and in vitro hemostatic abilities and accelerated blood clotting by stimulating the coagulation pathway to promote platelet aggregation at the wounds and the formation of mature blood clots for a new approach for acute trauma treatment.


Subject(s)
Hemostatics , Nanofibers , Thrombosis , Mice , Animals , Gelatin/chemistry , Calcium Chloride , Calcium/pharmacology , Hemolysis , Hemostasis , Hemostatics/pharmacology , Hemostatics/chemistry , Hemorrhage , Ions/pharmacology
8.
Carbon N Y ; 203: 202-210, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36506702

ABSTRACT

Polymer nanocomposite films have recently shown superior energy dissipation capability through the micro-projectile impact testing method. However, how stress waves interact with nanointerfaces and the underlying deformation mechanisms have remained largely elusive. This paper investigates the detailed stress wave propagation process and dynamic failure mechanisms of layered poly(methyl methacrylate) (PMMA) - graphene nanocomposite films during piston impact through coarse-grained molecular dynamics simulations. The spatiotemporal contours of stress and local density clearly demonstrate shock front, reflected wave, and release wave. By plotting shock front velocity (U s ) against piston velocity (U p ), we find that the linear Hugoniot U s - U p relationship generally observed for bulk polymer systems also applies to the layered nanocomposite system. When the piston reaches a critical velocity, PMMA crazing can emerge at the location where the major reflected wave and release wave meet. We show that the activation of PMMA crazing significantly enhances the energy dissipation ratio of the nanocomposite films, defined as the ratio between the dissipated energy through irreversible deformation and the input kinetic energy. The ratio maximizes at the critical U p when the PMMA crazing starts to develop and then decreases as U p further increases. We also find that a critical PMMA-graphene interfacial strength is required to activate PMMA crazing instead of interfacial separation. Additionally, layer thickness affects the amount of input kinetic energy and dissipated energy of nanocomposite films under impact. This study provides important insights into the detailed dynamic deformation mechanisms and how nanointerfaces/nanostructures affect the energy dissipation capability of layered nanocomposite films.

9.
Front Microbiol ; 13: 900690, 2022.
Article in English | MEDLINE | ID: mdl-35711752

ABSTRACT

The purpose of this study was to investigate the prevalence of Cronobacter spp. in commercial powdered infant formula (PIF) from nine provinces in China from March 2018 to September 2020, and to reveal the genotype, biofilm-forming ability, and antibiotic susceptibility of these isolates. A total of 27 Cronobacter strains, consisting of 22 Cronobacter sakazakii strains, 3 Cronobacter malonaticus strains, 1 Cronobacter turicensis strain, and 1 Cronobacter dublinensis strain, were isolated from 3,600 commercial PIF samples with a prevalence rate of 0.75%. Compared with the other 8 provinces, PIF from Shaanxi province had a higher prevalence rate (1.25%) of Cronobacter spp. These isolates were divided into 14 sequence types (STs), and 6 Cronobacter serotypes. The main Cronobacter STs were ST4, ST1, and ST64, and the dominant Cronobacter serotype was C. sakazakii serotype O2. Approximately 88.89% of Cronobacter isolates had a strong ability (OD595 > 1) to form biofilms on tinplate, among which the strains with ST4 were more dominant. All isolates were susceptible to ampicillin-sulbactam, ceftriaxone, cefotaxime, sulfadiazine, sulfadoxine, trimethoprim-sulfamethoxazole, gentamicin, tetracycline, ciprofloxacin, and colistin, while 55.56 and 96.30% isolates were resistant to cephalothin and vancomycin, respectively. Taken together, our findings highlighted the contamination status and characterization of Cronobacter spp. in commercial PIF from nine provinces of China, and provided guidance for the effective prevention and control of this pathogen in the production of PIF.

10.
Polymer (Guildf) ; 2452022 Apr 06.
Article in English | MEDLINE | ID: mdl-35386266

ABSTRACT

This study uses molecular dynamics (MD) simulations to investigate the molecular mechanisms of polyvinylidene fluoride (PVDF) influenced by temperature, electric poling, and mechanical stretching. The ß-phase, with all-trans ⟨T⟩ planar zigzag conformation, is known to have the best potential of energy harvesting, while α-phase, with alternating trans ⟨T⟩ and gauche ⟨G⟩ linkages, is more stable in terms of potential energy. By applying an electric field and uniaxial deformation to an amorphous PVDF system, we study the transformation from α- to ß-phase and corresponding molecular mechanisms by tracking the molecular chain conformation using the trans percentages (PT). After complete relaxation of molecular chains, the chain conformations and PT values indicate a typical distribution pattern of α-phase. Next, we observe that the dipole moment of the system increases significantly with the presence of a strong electric field without immediately affecting the chain conformations. The increment of dipole moment is due to the aligning of side atoms within the chains and the increment becomes more significant with elevated temperature. In contrast, chain conformations change significantly under mechanical stretching. Specifically, before yielding, the total dipole moments are still governed by local orientations of atoms. Later, the chain segments begin to straighten in the large deformation stage, which leads to the increment of the total dipole moment. Our results also show that there exists an optimal temperature window for maximum ⟨G⟩ to ⟨T⟩ transformation rate. Moreover, we look into the synergistic effect of electric poling and mechanical stretching and explain molecular-level mechanisms for this effect. This study contributes to the fundamental understanding of the underlying molecular mechanisms for the piezoelectric PVDF system under different processing conditions.

11.
Bioact Mater ; 9: 63-76, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34820556

ABSTRACT

The high therapeutic resistance of tumor is the primary cause behind tumor recurrence and incurability. In recent years, scientists have devoted themselves to find a variety of treatments to solve this problem. Herein, we propose a multi-hit strategy that is based on the biodegradable hollow mesoporous Prussian blue (HMPB)-based nanosystem for tumor-specific therapy that encapsulated the critical heat shock protein 90 (HSP90) inhibitor 17-dimethylamino-ethylamino-17-demethoxydeldanamycin (17-DMAG). The nanosystem was further modified using thermotropic phase transition material star-PEG-PCL (sPP) and hyaluronic acid (HA), which offers near infrared light (NIR) responsive release characteristic, as well as enhanced tumor cell endocytosis. Upon cell internalization of 17-DMAG-HMPB@sPP@HA and under 808 nm laser irradiation, photothermal-conversion effect of HMPB directly kills cells using hyperthermia, which further causes phase transition of sPP to trigger release of 17-DMAG, inhibits HSP90 activity and blocks multiple signaling pathways, including cell cycle, Akt and HIF pathways. Additionally, the down-regulation of GPX4 protein expression by 17-DMAG and the release of ferric and ferrous ions from gradual degradation of HMPB in the endogenous mild acidic microenvironment in tumors promoted the occurrence of ferroptosis. Importantly, the antitumor effect of 17-DMAG and ferroptosis damage were amplified using photothermal effect of HMPB by accelerating release of ferric and ferrous ions, and reducing HSP90 expression in cells, which induced powerful antitumor effect in vitro and in vivo. This multi-hit therapeutic nanosystem helps provide a novel perspective for solving the predicament of cancer treatment, as well as a promising strategy for design of a novel cancer treatment nanoplatform.

12.
Comput Mater Sci ; 2022022 Feb 01.
Article in English | MEDLINE | ID: mdl-34898854

ABSTRACT

This study integrates 3D printing and finite element analysis (FEA) to investigate the effect of micro-architectural characteristics on the mechanical properties of porous scaffolds. The studied characteristics include the thickness of the scaffold walls and the number of domains at the cross-section. We use 3D printing to fabricate scaffolds of deliberately designed microstructures to enable strict control of the structures. The longitudinal compressive properties of different scaffolds are first analyzed through experimental testing. Then, FEA is conducted to investigate the mechanical properties and the deformation mechanisms of the scaffolds. We find that decreasing wall thickness leads to failure mechanism transition from wall compression failure to buckling instability. For scaffolds with different wall thicknesses, the failure mechanisms and the critical loads are evaluated using the theory of thin plate buckling. For the characteristic of the number of domains, both experimental and FEA results indicate increasing effective stiffness with increasing domains. Interestingly, we find that with the material properties extracted from a single wall scaffold, the computational models tend to overestimate the effective compression modulus of scaffolds with larger numbers of walls or domains than the experimental data. This observation indicates possible size-dependent material properties in 3D printed structs. Our study demonstrates that integrating experiments and computational modeling can provide fundamental insights into the mechanical properties and deformation mechanisms of micro-architectured scaffolds and unveil unique small-scale material behaviors.

13.
Compos Struct ; 2752021 Nov 01.
Article in English | MEDLINE | ID: mdl-34764528

ABSTRACT

With a better balance among good mechanical performance, high freedom of design, and low material and manufacturing cost, chopped carbon fiber chip reinforced sheet molding compound (SMC) composites show great potential in different engineering applications. In this paper, bending fatigue behaviors of SMC composites considering the heterogeneous fiber orientation distributions have been thoroughly investigated utilizing both experimental and computational methods. First, four-point bending fatigue tests are performed with designed SMC composites, and the local modulus is adopted as a metric to represent the local fiber orientation of two opposing sides. Interestingly, SMC composites with and without large discrepancy in local modulus of opposing sides show different fatigue behaviors. Interrupted tests are conducted to explore the bending fatigue failure mechanism, and the damage processes of valid specimens are also closely examined. We find that the fatigue failure of SMC composites under four-point bending is governed by crack propagation instead of crack initiation. Because of this, the heterogeneous local fiber orientations of both sides of the specimen influence fatigue life. The microstructure of the lower side shows a direct influence while that of the upper side also exhibiting influence which becomes more prominent for high cycle fatigue cases. Furthermore, a hybrid micro-macro computational model is proposed to efficiently study the cyclic bending behavior of SMC composites. The region of interest is reconstructed with a modified random sequential absorption algorithm to conserve all the microstructural details including the heterogeneous fiber orientation, while the rest of the regions are modeled as homogenized macro-scale continua. Combined with a framework to capture the progressive fatigue damage under cyclic bending, the bending fatigue behaviors of SMC composites are accurately captured by the hybrid computational model comparing with our experimental analysis.

14.
J Appl Mech ; 88(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34840347

ABSTRACT

Mechanical properties of porous materials depend on their micro-architectural characteristics. Freeze casting is an effective method to fabricate micro-architectured porous scaffolds. Three key characteristics generated during freeze casting are wall thickness, number of domains at the cross-section, and transverse bridges connecting adjacent walls. To specifically study the effect of these structural characteristics on the mechanics and anisotropic compressive properties of scaffolds, we utilize additive manufacturing, i.e., 3D printing, to fabricate strictly designed cubic scaffolds with varying one characteristic at a time. We then compare strength, toughness, resilience, stiffness, and strain to failure in three orthogonal directions of the scaffolds, including longitudinal and transverse directions. To compare these multidimensional mechanics in a single diagram, we use a previously developed radar chart method to evaluate different scaffolds and unravel the effect of the structural characteristics. We find that the multidimensional mechanics can be effectively tuned by the micro-architectural characteristics. Notably, the buckling resistance of the scaffolds depends on all three structural characteristics. Our results show that an increased number of domains leads to enhanced toughness in all three directions. Increasing wall thickness leads to enhanced mechanical properties but comes at the price of losing small-sized pores, which is not favored for certain applications. In addition, adding transverse bridges increase not only the transverse strength of the scaffolds but also the longitudinal strength as they also enhance the buckling resistance. Our study provides important insights into the structure-property relationships of 3D-printed micro-architectured porous scaffolds.

15.
Article in English | MEDLINE | ID: mdl-34824867

ABSTRACT

A persistent challenge in predictive molecular modeling of thermoset polymers is to capture the effects of chemical composition and degree of crosslinking (DC) on dynamical and mechanical properties with high computational efficiency. We established a new coarse-graining (CG) approach that combines the energy renormalization method with Gaussian process surrogate models of the molecular dynamics simulations. This allows a machine-learning informed functional calibration of DC-dependent CG force field parameters. Taking versatile epoxy resins consisting of Bisphenol A diglycidyl ether combined with curing agent of either 4,4-Diaminodicyclohexylmethane or polyoxypropylene diamines, we demonstrated excellent agreement between all-atom and CG predictions for density, Debye-Waller factor, Young's modulus and yield stress at any DC. We further introduce a surrogate model enabled simplification of the functional forms of 14 non-bonded calibration parameters by quantifying the uncertainty of a candidate set of high-dimensional/flexible calibration functions. The framework established provides an efficient methodology for chemistry-specific, large-scale investigations of the dynamics and mechanics of epoxy resins.

16.
Extreme Mech Lett ; 492021 Nov.
Article in English | MEDLINE | ID: mdl-34541269

ABSTRACT

Nacre, a natural nanocomposite with a brick-and-mortar structure existing in the inner layer of mollusk shells, has been shown to optimize strength and toughness along the laminae (in-plane) direction. However, such natural materials more often experience impact load in the direction perpendicular to the layers (i.e., out-of-plane direction) from predators. The dynamic responses and deformation mechanisms of layered structures under impact load in the out-of-plane direction have been much less analyzed. This study investigates the dynamic mechanical behaviors of nacre-inspired layered nanocomposite films using a model system that comprises alternating multi-layer graphene (MLG) and polymethyl methacrylate (PMMA) phases. With a validated coarse-grained molecular dynamics simulation approach, we systematically study the mechanical properties and impact resistance of the MLG-PMMA nanocomposite films with different internal nanostructures, which are characterized by the layer thickness and number of repetitions while keeping the total volume constant. We find that as the layer thickness decreases, the effective modulus of the polymer phase confined by the adjacent MLG phases increases. Using ballistic impact simulations to explore the dynamic responses of nanocomposite films in the out-of-plane direction, we find that the impact resistance and dynamic failure mechanisms of the films depend on the internal nanostructures. Specifically, when each layer is relatively thick, the nanocomposite is more prone to spalling-like failure induced by compressive stress waves from the projectile impact. Whereas, when there are more repetitions, and each layer becomes relatively thin, a high-velocity projectile sequentially penetrates the nanocomposite film. In the low projectile velocity regime, the film develops crazing-like deformation zones in PMMA phases. We also show that the position of the soft PMMA phase relative to the stiff graphene sheets plays a significant role in the ballistic impact performance of the investigated films. Our study provides insights into the effect of nanostructures on the dynamic mechanical behaviors of layered nanocomposites, which can lead to effective design strategies for impact-resistant films.

17.
Compos B Eng ; 2152021 Jun 15.
Article in English | MEDLINE | ID: mdl-33889053

ABSTRACT

In this study, integrated experimental tests and computational modeling are proposed to investigate the failure mechanisms of open-hole cross-ply carbon fiber reinforced polymer (CFRP) laminated composites. In particular, we propose two effective methods, which include width-tapered double cantilever beam (WTDCB) and fixed-ratio mixed-mode end load split (FRMMELS) tests, to obtain the experimental data more reliably. We then calibrate the traction-separation laws of cohesive zone model (CZM) used among laminas of the composites by leveraging these two methods. The experimental results of fracture energy, i.e. G Ic and G Tc , obtained from WTDCB and FRMMELS tests are generally insensitive to the crack length thus requiring no effort to accurately measure the crack tip. Moreover, FRMMELS sample contains a fixed mixed-mode ratio of G IIc /G Tc depending on the width taper ratio. Examining comparisons between experimental results of FRMMELS tests and failure surface of B-K failure criterion predicted from a curve fitting, good agreement between the predictions and experimental data has been found, indicating that FRMMELS tests are an effective method to determine mixed-mode fracture criterion. In addition, a coupled experimental-computational modeling of WTDCB, edge notched flexure, and FRMMELS tests are adopted to calibrate and validate the interfacial strengths. Finally, failure mechanisms of open-hole cross-ply CFRP laminates under flexural loading have been studied systematically using experimental and multi-scale computational analyses based on the developed CZM model. The initiation and propagation of delamination, the failure of laminated layers as well as load-displacement curves predicted from computational analyses are in good agreement with what we have observed experimentally.

18.
Carbon N Y ; 177: 128-137, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33776064

ABSTRACT

Multilayer graphene sheets (MLGSs) are promising nano-reinforcements that can effectively enhance the properties of polymer matrices. Despite many studies on MLGSs-reinforced polymer nanocomposites, the effect of wrinkles formed in MLGSs on the reinforcement effect and the viscoelastic properties of polymer nanocomposites has remained unknown. In this study, building upon previously developed coarse-grained models of MLGSs and poly(methyl methacrylate) coupled with molecular dynamics simulations, we have systematically investigated nanocomposites with different numbers of graphene layers and various wrinkle configurations. We find that with decreasing degree of waviness and increasing numbers of layers, the elastic modulus of the nanocomposites increases. Interestingly, we observe a sudden stress drop during shear deformation of certain wrinkled MLGSs-reinforced nanocomposites. We further conduct small amplitude oscillatory shear simulations on these nanocomposites and find that the nanocomposites with these specific wrinkle configurations also show peculiarly large loss tangents, indicating an increasing capability of energy dissipation. These behaviors are attributed to the activation of the interlayer sliding among these wrinkled MLGSs, as their interlayer shear strengths are indeed lower than flat MLGSs measured by steered molecular dynamics technique. Our study demonstrates that the viscoelastic properties and deformation mechanisms of polymer nanocomposites can be tuned through MLGS wrinkle engineering.

19.
Comput Mater Sci ; 1912021 Apr 14.
Article in English | MEDLINE | ID: mdl-33737768

ABSTRACT

Incorporating graphene nanosheets into a polymer matrix is a promising way to utilize the remarkable electronic, thermal, and mechanical properties of graphene. However, the underlying mechanisms near the graphene-polymer interface remain poorly understood. In this study, we employ coarse-grained molecular dynamics (MD) simulations to investigate the nanoscale mechanisms present in graphene-reinforced polycarbonate (GRPC) and the effect of those mechanisms on GRPC's mechanical properties. With a mean-squared displacement analysis, we find that the polymer chains near the GRPC interface exhibit lower mobility than the chains further from the graphene sheet. We also show that the embedding of graphene increases Young's modulus and yield strength of bulk PC. Through non-equilibrium MD simulations and a close look into the deformation mechanisms, we find that early strain localization arises in GRPC, with voids being concentrated further away from the graphene sheet. These results indicate that graphene nanosheets promote the heterogeneous deformation of GRPC. Additionally, to gain deeper insight into the mechanical, interfacial, and viscoelastic properties of GRPC, we study the effects of varying PC chain lengths and interfacial interactions as well as the comparative performance of GRPC and PC under small amplitude oscillatory shear tests. We find that increasing the interfacial interaction leads to an increase in both storage and loss moduli, whereas varying chain length has minimal influence on the dynamic modulus of GRPC. This study contributes to the fundamental understanding of the nanoscale failure mechanisms and structure-property relationships of graphene reinforced polymer nanocomposites.

20.
Compos Struct ; 2612021 Apr.
Article in English | MEDLINE | ID: mdl-33633429

ABSTRACT

In this work, multi-scale finite element analyses based on three-dimensional (3D) hybrid macro/micro-scale computational models subjected to various loading conditions are carried out to examine the in-situ effect imposed by the neighboring plies on the failure initiation and propagation of cross-ply laminates. A detailed comparative study on crack suppression mechanisms due to the effect of embedded laminar thickness and adjacent ply orientation is presented. Furthermore, we compare the results of in-situ transverse failure strain and strength between the computational models and analytical predictions. Good agreements are generally observed, indicating the constructed computational models are highly accurate to quantify the in-situ effect. Subsequently, empirical formulas for calculating the in-situ strengths as a function of embedded ply thickness and different ply angle between embedded and adjacent plies are developed, during which several material parameters are obtained using a reverse fitting method. Finally, a new set of failure criteria for σ 22-τ 12, σ 22-τ 23, and σ 11-τ 12 accounting for the in-situ strengths are proposed to predict laminated composites failure under multi-axial stress states. This study demonstrates an effective and efficient computational technique towards the accurate prediction of the failure behaviors and strengths of cross-ply laminates by including the in-situ effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...