Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Viruses ; 15(9)2023 09 12.
Article in English | MEDLINE | ID: mdl-37766314

ABSTRACT

Non-structural protein 4 (NS4) of insect-borne and tick-borne orbiviruses is encoded by genome segment 9, from a secondary open reading frame. Though a protein dispensable for bluetongue virus (BTV) replication, it has been shown to counter the interferon response in cells infected with BTV or African horse sickness virus. We further explored the functional role(s) of NS4 proteins of BTV and the tick-borne Great Island virus (GIV). We show that NS4 of BTV or GIV helps an E3L deletion mutant of vaccinia virus to replicate efficiently in interferon-treated cells, further confirming the role of NS4 as an interferon antagonist. Our results indicate that ectopically expressed NS4 of BTV localised with caspase 3 within the nucleus and was found in a protein complex with active caspase 3 in a pull-down assay. Previous studies have shown that pro-apoptotic caspases (including caspase 3) suppress type I interferon response by cleaving mediators involved in interferon signalling. Our data suggest that orbivirus NS4 plays a role in modulating the apoptotic process and/or regulating the interferon response in mammalian cells, thus acting as a virulence factor in pathogenesis.


Subject(s)
Bluetongue virus , Interferon Type I , Orbivirus , Thogotovirus , Animals , Orbivirus/genetics , Caspase 3 , Bluetongue virus/genetics , Apoptosis , Mammals
2.
Biomolecules ; 13(6)2023 05 23.
Article in English | MEDLINE | ID: mdl-37371457

ABSTRACT

At least 12 serotypes of 'atypical' bluetongue virus (BTV-25 to BTV-36) have been identified to date. These atypical serotypes fail to infect/replicate in Culicoides-derived cell lines and/or adult Culicoides vectors and hence can no longer be transmitted by these vectors. They appear to be horizontally transmitted from infected to in-contact ruminants, although the route(s) of infection remain to be identified. Viral genome segments 1, 2 and 3 (Seg-1, Seg2 and Seg-3) of BTV-26 were identified as involved in blocking virus replication in KC cells. We have developed Culicoides-specific expression plasmids, which we used in transfected insect cells to assess the stability of viral mRNAs and protein expression from full-length open reading frames of Seg-1, -2 and -3 of BTV-1 (a Culicoides-vectored BTV) or BTV-26. Our results indicate that the blocked replication of BTV-26 in KC cells is not due to an RNAi response, which would lead to rapid degradation of viral mRNAs. A combination of degradation/poor expression and/or modification of the proteins encoded by these segments appears to drive the failure of BTV-26 core/whole virus-particles to assemble and replicate effectively in Culicoides cells.


Subject(s)
Bluetongue virus , Ceratopogonidae , Animals , Bluetongue virus/genetics , Bluetongue virus/metabolism , Ceratopogonidae/genetics , Serogroup , Genome, Viral , Cell Line , Virus Replication/genetics
3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047816

ABSTRACT

Bioinformatic analyses have predicted that orbiviruses encode an additional, small non-structural protein (NS5) from a secondary open reading frame on genome segment 10. However, this protein has not previously been detected in infected mammalian or insect cells. NS5-specific antibodies were generated in mice and were used to identify NS5 synthesised in orbivirus-infected BSR cells or cells transfected with NS5 expression plasmids. Confocal microscopy shows that although NS5 accumulates in the nucleus, particularly in the nucleolus, which becomes disrupted, it also appears in the cell cytoplasm, co-localising with mitochondria. NS5 helps to prevent the degradation of ribosomal RNAs during infection and reduces host-cell protein synthesis However, it helps to extend cell viability by supporting viral protein synthesis and virus replication. Pulldown studies showed that NS5 binds to ssRNAs and supercoiled DNAs and demonstrates interactions with ZBP1, suggesting that it modulates host-cell responses.


Subject(s)
Orbivirus , Animals , Mice , Cell Nucleus/metabolism , DNA , Orbivirus/genetics , Orbivirus/metabolism , RNA, Viral/genetics , RNA-Binding Proteins , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
4.
Pathogens ; 12(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111488

ABSTRACT

Bluetongue is an economically important disease of domesticated and wild ruminants caused by bluetongue virus (BTV). There are at least 36 different serotypes of BTV (the identity of which is determined by its outer-capsid protein VP2), most of which are transmitted by Culicoides biting midges. IFNAR(-/-) mice immunised with plant-expressed outer-capsid protein VP2 (rVP2) of BTV serotypes -1, -4 or -8, or the smaller outer-capsid protein rVP5 of BTV-10, or mock-immunised with PBS, were subsequently challenged with virulent strains of BTV-4 or BTV-8, or with an attenuated clone of BTV-1 (BTV-1RGC7). The mice that had received rVP2 generated a protective immune response against the homologous BTV serotype, reducing viraemia (as detected by qRT-PCR), the severity of clinical signs and mortality levels. No cross-serotype protection was observed after challenge with the heterologous BTV serotypes. However, the severity of clinical signs, viraemia and fatality levels after challenge with the attenuated strain of BTV-1 were all increased in mice immunised with rVP2 of BTV-4 and BTV-8, or with rVP5 of BTV10. The possibility is discussed that non-neutralising antibodies, reflecting serological relationships between the outer-capsid proteins of these different BTV serotypes, could lead to 'antibody-dependent enhancement of infection' (ADE). Such interactions could affect the epidemiology and emergence of different BTV strains in the field and would therefore be relevant to the design and implementation of vaccination campaigns.

5.
J Gen Virol ; 103(11)2022 11.
Article in English | MEDLINE | ID: mdl-36394457

ABSTRACT

Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.


Subject(s)
Fungi , RNA, Double-Stranded , Animals , Humans , Plants , Host Specificity , Phylogeny
6.
J Gen Virol ; 103(10)2022 10.
Article in English | MEDLINE | ID: mdl-36215107

ABSTRACT

Sedoreoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (10-12 linear segments) dsRNA genomes of 18-26 kbp. Sedoreovirids have a broad host range, infecting mammals, birds, crustaceans, arthropods, algae and plants. Some of them have important pathogenic potential for humans (e.g. rotavirus A), livestock (e.g. bluetongue virus) and plants (e.g. rice dwarf virus). This is a summary of the ICTV Report on the family Sedoreoviridae, which is available at ictv.global/report/sedoreoviridae.


Subject(s)
Mammals , RNA, Double-Stranded , Animals , Birds , Genome, Viral , Humans , Plants , Virion , Virus Replication
7.
Transbound Emerg Dis ; 69(4): e671-e681, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34921513

ABSTRACT

African horse sickness (AHS) is a vector-borne disease transmitted by Culicoides spp., endemic to sub-Saharan Africa. There have been many examples of historic and recent outbreaks in the Middle East, Asia and Europe. However, not much is known about infection dynamics and outbreak potential in these naive populations. In order to better inform a previously published ordinary differential equation model, we performed a systematic literature search to identify studies documenting experimental infection of naive (control) equids in vaccination trials. Data on the time until the onset of viraemia, clinical signs and death after experimental infection of a naive equid and duration of viraemia were extracted. The time to viraemia was 4.6 days and the time to clinical signs was 4.9 days, longer than the previously estimated latent period of 3.7 days. The infectious periods of animals that died/were euthanized or survived were found to be 3.9 and 8.7 days, whereas previous estimations were 4.4 and 6 days, respectively. The case fatality was also found to be higher than previous estimations. The updated parameter values (along with other more recently published estimates from literature) resulted in an increase in the number of host deaths, decrease in the duration of the outbreak and greater prevalence in vectors.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Ceratopogonidae , Horse Diseases , African Horse Sickness/epidemiology , Animals , Horses , Models, Theoretical , Viremia/veterinary
8.
Viruses ; 13(11)2021 11 02.
Article in English | MEDLINE | ID: mdl-34835014

ABSTRACT

Bluetongue virus serotypes 1 to 24 are transmitted primarily by infected Culicoides midges, in which they also replicate. However, "atypical" BTV serotypes (BTV-25, -26, -27 and -28) have recently been identified that do not infect and replicate in adult Culicoides, or a Culicoides derived cell line (KC cells). These atypical viruses are transmitted horizontally by direct contact between infected and susceptible hosts (primarily small ruminants) causing only mild clinical signs, although the exact transmission mechanisms involved have yet to be determined. We used reverse genetics to generate a strain of BTV-1 (BTV-1 RGC7) which is less virulent, infecting IFNAR(-/-) mice without killing them. Reassortant viruses were also engineered, using the BTV-1 RGC7 genetic backbone, containing individual genome segments derived from BTV-26. These reassortant viruses were used to explore the genetic control of horizontal transmission (HT) in the IFNAR(-/-) mouse model. Previous studies showed that genome segments 1, 2 and 3 restrict infection of Culicoides cells, along with a minor role for segment 7. The current study demonstrates that genome segments 2, 5 and 10 of BTV-26 (coding for proteins VP2, NS1 and NS3/NS3a/NS5, respectively) are individually sufficient to promote HT.


Subject(s)
Bluetongue virus/genetics , Disease Transmission, Infectious , Reassortant Viruses/genetics , Animals , Bluetongue/virology , Ceratopogonidae/virology , Disease Models, Animal , Genetic Engineering , Mice , Mice, Knockout , Receptor, Interferon alpha-beta , Serogroup
9.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34452303

ABSTRACT

Statin derivatives can inhibit the replication of a range of viruses, including hepatitis C virus (HCV, Hepacivirus), dengue virus (Flavivirus), African swine fever virus (Asfarviridae) and poliovirus (Picornaviridae). We assess the antiviral effect of fluvastatin in cells infected with orbiviruses (bluetongue virus (BTV) and Great Island virus (GIV)). The synthesis of orbivirus outer-capsid protein VP2 (detected by confocal immunofluorescence imaging) was used to assess levels of virus replication, showing a reduction in fluvastatin-treated cells. A reduction in virus titres of ~1.7 log (98%) in fluvastatin-treated cells was detected by a plaque assay. We have previously identified a fourth non-structural protein (NS4) of BTV and GIV, showing that it interacts with lipid droplets in infected cells. Fluvastatin, which inhibits 3-hydroxy 3-methyl glutaryl CoA reductase in the mevalonic acid pathway, disrupts these NS4 interactions. These findings highlight the role of the lipid pathways in orbivirus replication and suggest a greater role for the membrane-enveloped orbivirus particles than previously recognised. Chemical intermediates of the mevalonic acid pathway were used to assess their potential to rescue orbivirus replication. Pre-treatment of IFNAR(-/-) mice with fluvastatin promoted their survival upon challenge with live BTV, although only limited protection was observed.


Subject(s)
Antiviral Agents/pharmacology , Bluetongue virus/drug effects , Fluvastatin/pharmacology , Mevalonic Acid/metabolism , Orbivirus/drug effects , Animals , Antiviral Agents/therapeutic use , Bluetongue/drug therapy , Bluetongue/virology , Bluetongue virus/physiology , Cell Line , Ceratopogonidae/enzymology , Ceratopogonidae/virology , Fluvastatin/therapeutic use , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Metabolic Networks and Pathways , Mice , Orbivirus/physiology , Receptor, Interferon alpha-beta/genetics , Viral Load/drug effects , Virus Replication/drug effects , Yellow fever virus/drug effects , Yellow fever virus/physiology
10.
Viruses ; 13(8)2021 07 26.
Article in English | MEDLINE | ID: mdl-34452321

ABSTRACT

Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.


Subject(s)
Bluetongue virus/classification , Bluetongue virus/genetics , Capsid Proteins/classification , Capsid Proteins/genetics , Cross Reactions/immunology , Serogroup , Animals , Antigens, Viral/immunology , Bluetongue/immunology , Bluetongue/virology , Bluetongue virus/immunology , Capsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Female , Rabbits/immunology , Ruminants/immunology , Serotyping , Sheep/immunology , Nicotiana/genetics
11.
Viruses ; 13(5)2021 05 15.
Article in English | MEDLINE | ID: mdl-34063508

ABSTRACT

Arboviruses such as bluetongue virus (BTV) replicate in arthropod vectors involved in their transmission between susceptible vertebrate-hosts. The "classical" BTV strains infect and replicate effectively in cells of their insect-vectors (Culicoides biting-midges), as well as in those of their mammalian-hosts (ruminants). However, in the last decade, some "atypical" BTV strains, belonging to additional serotypes (e.g., BTV-26), have been found to replicate efficiently only in mammalian cells, while their replication is severely restricted in Culicoides cells. Importantly, there is evidence that these atypical BTV are transmitted by direct-contact between their mammalian hosts. Here, the viral determinants and mechanisms restricting viral replication in Culicoides were investigated using a classical BTV-1, an "atypical" BTV-26 and a BTV-1/BTV-26 reassortant virus, derived by reverse genetics. Viruses containing the capsid of BTV-26 showed a reduced ability to attach to Culicoides cells, blocking early steps of the replication cycle, while attachment and replication in mammalian cells was not restricted. The replication of BTV-26 was also severely reduced in other arthropod cells, derived from mosquitoes or ticks. The data presented identifies mechanisms and potential barriers to infection and transmission by the newly emerged "atypical" BTV strains in Culicoides.


Subject(s)
Bluetongue virus/classification , Bluetongue virus/physiology , Capsid Proteins/metabolism , Virus Replication , Animals , Arthropods , Bluetongue virus/isolation & purification , Bluetongue virus/ultrastructure , Cell Line , Cells, Cultured , Host-Pathogen Interactions , Serogroup , Virus Attachment , Virus Replication/drug effects
12.
Microorganisms ; 8(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486323

ABSTRACT

Culicoides biting midges (Diptera: Ceratopogonidae) transmit arboviruses of veterinary or medical importance, including bluetongue virus (BTV) and Schmallenberg virus, as well as causing severe irritation to livestock and humans. Arthropod cell lines are essential laboratory research tools for the isolation and propagation of vector-borne pathogens and the investigation of host-vector-pathogen interactions. Here we report the establishment of two continuous cell lines, CNE/LULS44 and CNE/LULS47, from embryos of Culicoides nubeculosus, a midge distributed throughout the Western Palearctic region. Species origin of the cultured cells was confirmed by polymerase chain reaction (PCR) amplification and sequencing of a fragment of the cytochrome oxidase 1 gene, and the absence of bacterial contamination was confirmed by bacterial 16S rRNA PCR. Both lines have been successfully cryopreserved and resuscitated. The majority of cells examined in both lines had the expected diploid chromosome number of 2n = 6. Transmission electron microscopy of CNE/LULS44 cells revealed the presence of large mitochondria within cells of a diverse population, while arrays of virus-like particles were not seen. CNE/LULS44 cells supported replication of a strain of BTV serotype 1, but not of a strain of serotype 26 which is not known to be insect-transmitted. These new cell lines will expand the scope of research on Culicoides-borne pathogens.

13.
PLoS Biol ; 18(4): e3000673, 2020 04.
Article in English | MEDLINE | ID: mdl-32343693

ABSTRACT

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Genome, Viral , Animals , Biological Evolution , Bluetongue/epidemiology , Bluetongue virus/genetics , Disease Outbreaks , Europe/epidemiology , France , Livestock/virology , Mutation , Phylogeny
14.
Vaccine X ; 2: 100026, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31384743

ABSTRACT

Bluetongue is a severe, economically important disease of ruminants that is widely distributed in tropical and temperate regions around the world. It is associated with major production losses, restrictions of animal movements and trade, as well as costs associated with developing and implementing effective surveillance and control measures. Mammalian hosts infected with bluetongue virus (BTV) generate a protective neutralising antibody response targeting the major BTV outer-capsid protein and serotype-specific antigen, VP2. BTV VP2 proteins that have been expressed in plants are soluble, with a native conformation displaying neutralising epitopes and can assemble with other BTV structural proteins to form virus-like particles (VLPs). His-tagged VP2 proteins of BTV serotypes 4 and 8 were transiently expressed in Nicotiana benthamiana then purified by immobilised metal affinity chromatography (IMAC). Antisera from IFNAR -/- mice prime/boost vaccinated with the purified proteins, were shown to contain VP2-specific antibodies by Indirect ELISA (I-ELISA), western blotting and serum neutralisation tests (SNT). Vaccinated mice, subsequently challenged with either the homologous or heterologous BTV serotype, developed viraemia by day 3 post-infection. However, no clinical signs were observed in mice challenged with the homologous serotype (either prime-boost or single-shot vaccinated), all of which survived for the duration of the study. In contrast, all of the vaccinated mice challenged with a heterologous serotype, died, showing no evidence of cross-protection or suppression of viraemia, as detected by real-time RT-qPCR or virus isolation. The induction of protective, serotype-specific neutralising antibodies in IFNAR -/- mice, indicates potential for the use of plant-expressed BTV VP2s as subunit vaccine components, or as a basis for serotype-specific serological assays.

15.
J Gen Virol ; 100(4): 568-582, 2019 04.
Article in English | MEDLINE | ID: mdl-30843784

ABSTRACT

Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes, macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types in widely diverse vertebrate and invertebrate hosts. Improved understanding of BTV cell-entry could lead to novel antiviral approaches that can block virus transmission from cell to cell between its invertebrate and vertebrate hosts. Here, we have investigated BTV cell-entry using endothelial cells derived from the natural bovine host (BFA cells) and purified whole virus particles of a low-passage, insect-cell isolate of a virulent strain of BTV-1. Our results show that the main entry pathway for infection of BFA cells is dependent on actin and dynamin, and shares certain characteristics with macropinocytosis. The ability to use a macropinocytosis-like entry route could explain the diverse cell tropism of BTV and contribute to the efficiency of transmission between vertebrate and invertebrate hosts.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Cattle Diseases/virology , Insecta/virology , Pinocytosis , Virus Internalization , Actins/genetics , Actins/metabolism , Animals , Bluetongue/genetics , Bluetongue/metabolism , Bluetongue/physiopathology , Bluetongue virus/genetics , Bluetongue virus/growth & development , Cattle , Cattle Diseases/genetics , Cattle Diseases/metabolism , Cattle Diseases/physiopathology , Cells, Cultured , Dynamins/genetics , Dynamins/metabolism , Endothelial Cells/virology , Serial Passage , Sheep , Sheep Diseases/virology , Virus Replication
16.
Braz J Microbiol ; 50(1): 287-296, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30637652

ABSTRACT

Equine encephalosis (EE) is an acute, arthropod-borne, noncontagious, febrile disease of equids. The clinical signs of EE are similar to milder forms of African horse sickness (AHS) and the two diseases can be easily confused. The Equine encephalosis virus (EEV) is a distinct virus species within the genus Orbivirus, family Reoviridae, with ten linear segments of dsRNA genome. Seven distinct serotypes of EEV have been recognised on the basis of sequence analyses of Seg-2. The need for differential diagnosis of similar forms of EE and AHS warranted the development of molecular diagnostic methods for specific detection and identification of EEV. We report the development of quantitative real-time RT-PCR assay for detection of any member of the EEV species targeting the highly conserved EEV Seg-9. Similar serotype-specific qRT-PCR assays were designed for each of the seven EEV serotypes targeting genome Seg-2, encoding the serotype determining VP2 protein. These assays were evaluated using different EEV serotypes and other closely related orbiviruses. They were shown to be EEV virus species-specific, or EEV type-specific capable of detecting 1 to 13 copies of viral RNA in clinical samples. The assays failed to detect RNA from closely related orbiviruses, including AHSV and Peruvian horse sickness virus (PHSV) isolates.


Subject(s)
Arbovirus Infections/veterinary , Horse Diseases/virology , Orbivirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Arbovirus Infections/diagnosis , Arbovirus Infections/virology , Horse Diseases/diagnosis , Horses , Orbivirus/classification , Orbivirus/genetics , Phylogeny
18.
Parasit Vectors ; 10(1): 420, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28915829

ABSTRACT

BACKGROUND: This field-based study examined the abundance and species complement of mosquitoes (Diptera: Culicidae) attracted to humans at four sites in the United Kingdom (UK). The study used a systematic approach to directly measure feeding by mosquitoes on humans at multiple sites and using multiple volunteers. Quantifying how frequently humans are bitten in the field by mosquitoes is a fundamental parameter in assessing arthropod-borne virus transmission. METHODS: Human landing catches were conducted using a standardised protocol by multiple volunteers at four rural sites between July and August 2013. Collections commenced two hours prior to sunset and lasted for a total of four hours. To reduce bias occurring due to collection point or to the individual attractiveness of the volunteer to mosquitoes, each collection was divided into eight collection periods, with volunteers rotated by randomised Latin square design between four sampling points per site. While the aim was to collect mosquitoes prior to feeding, the source of blood meals from any engorged specimens was also identified by DNA barcoding. RESULTS: Three of the four sites yielded human-biting mosquito populations for a total of 915 mosquitoes of fifteen species/species groups. Mosquito species composition and biting rates differed significantly between sites, with individual volunteers collecting between 0 and 89 mosquitoes (over 200 per hour) of up to six species per collection period. Coquillettidia richiardii (Ficalbi, 1889) was responsible for the highest recorded biting rates at any one site, reaching 161 bites per hour, whilst maximum biting rates of 55 bites per hour were recorded for Culex modestus (Ficalbi, 1889). Human-biting by Culex pipiens (L., 1758) form pipiens was also observed at two sites, but at much lower rates when compared to other species. CONCLUSIONS: Several mosquito species are responsible for human nuisance biting pressure in southern England, although human exposure to biting may be largely limited to evening outdoor activities. This study indicates Cx. modestus can be a major human-biting species in the UK whilst Cx. pipiens f. pipiens may show greater opportunistic human-biting than indicated by earlier studies.


Subject(s)
Culicidae , Insect Bites and Stings/epidemiology , Animals , Anopheles/physiology , Blood/virology , Culex/physiology , Culicidae/classification , Culicidae/physiology , Culicidae/virology , Feeding Behavior , Humans , Mosquito Vectors/physiology , Mosquito Vectors/virology , Spatio-Temporal Analysis , United Kingdom/epidemiology , Virus Diseases/transmission
19.
Vet Ital ; 52(3-4): 187-193, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27723026

ABSTRACT

Bluetongue (BT) is a mild to severe disease of domestic and wild ruminants caused by the Bluetongue virus (BTV) and generally transmitted by Culicoides biting midges. Its occurrence also determines a livestock trade ban in affected countries with severe economic consequences on national and international trade. For this reason, in May 2011, the OIE encouraged the OIE Reference Laboratories to establish and maintain a BT network to provide expertise and training to the OIE and OIE Member Countries for BT diagnosis, surveillance and control. The network is constantly sustained by world leading scientists in the field of virology, epidemiology, serology, entomology and vaccine development. The website, available at http://oiebtnet.izs.it/btlabnet/, hosts an Information System containing data on BTV outbreaks and strains and a WebGIS that distributes maps on BTV occurrence. In this paper we describe the applications and present the benefits derived from the use of the WebGIS in the context of BT international surveillance network.


Subject(s)
Bluetongue , Internet , Laboratories , Animals , Bluetongue/epidemiology , Epidemiological Monitoring , Geographic Information Systems
20.
PLoS One ; 11(9): e0163014, 2016.
Article in English | MEDLINE | ID: mdl-27661614

ABSTRACT

Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.

SELECTION OF CITATIONS
SEARCH DETAIL
...