Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Folia Neuropathol ; 62(1): 32-46, 2024.
Article En | MEDLINE | ID: mdl-38741435

Human induced pluripotent stem cells (hiPSCs) are a potential source of somatic cells for cell therapies due to their ability to self-renew and differentiate into various cells of the body. To date, the clinical application of hiPSCs has been limited due to safety issues. The present study aims to standardize the safety procedure of the derivation of GMP-compliant induced pluripotent stem cell (iPSC) lines from human fibroblasts. The hiPSC lines were generated using the nonintegrative Sendai virus method to incorporate Yamanaka reprogramming factors (OCT3/4, SOX2, KLF4 and c-MYC) into cells. A constant temperature was maintained during the cell culture, including all stages of the culture after transduction with Sendai virus. Pluripotency was proved in six independently generated hiPSC lines from adult female (47 years old) and male (57 years old) donors' derived fibroblasts via alkaline phosphatase live (ALP) staining, qPCR, and immunocytochemistry. The hiPSC lines showed a gradual decrease in the presence of the virus with each subsequent passage, and this reduction was specific to the hiPSC line. The frequency and probability of chromosomal aberrations in hiPSCs were dependent on both the iPSC clone identity and sex of the donor. In summary, the generation of hiPSC for clinical applications requires safety standards application (biosafety protocol, quality control of hiPSC lines, viral and genetic integrity screening) from the first stages of the clonal selection of hiPSC from the same donor.


Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Sendai virus , Humans , Female , Male , Middle Aged , Cell Line , Fibroblasts , Cell Differentiation/physiology , Transduction, Genetic/methods , Sex Factors
2.
Cells ; 12(2)2023 01 16.
Article En | MEDLINE | ID: mdl-36672274

Dravet syndrome (DRVT) is a rare form of neurodevelopmental disorder with a high risk of sudden unexpected death in epilepsy (SUDEP), caused mainly (>80% cases) by mutations in the SCN1A gene, coding the Nav1.1 protein (alfa-subunit of voltage-sensitive sodium channel). Mutations in SCN1A are linked to heterogenous epileptic phenotypes of various types, severity, and patient prognosis. Here we generated iPSC lines from fibroblasts obtained from three individuals affected with DRVT carrying distinct mutations in the SCN1A gene (nonsense mutation p.Ser1516*, missense mutation p.Arg1596His, and splicing mutation c.2589+2dupT). The iPSC lines, generated with the non-integrative approach, retained the distinct SCN1A gene mutation of the donor fibroblasts and were characterized by confirming the expression of the pluripotency markers, the three-germ layer differentiation potential, the absence of exogenous vector expression, and a normal karyotype. The generated iPSC lines were used to establish ventral forebrain organoids, the most affected type of neurons in the pathology of DRVT. The DRVT organoid model will provide an additional resource for deciphering the pathology behind Nav1.1 haploinsufficiency and drug screening to remediate the functional deficits associated with the disease.


Epilepsies, Myoclonic , Induced Pluripotent Stem Cells , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Induced Pluripotent Stem Cells/metabolism , Epilepsies, Myoclonic/genetics , Neurons/metabolism , Prosencephalon/metabolism
3.
Cells ; 11(1)2021 12 30.
Article En | MEDLINE | ID: mdl-35011673

The peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a well-known transcriptional coactivator involved in mitochondrial biogenesis. PGC-1α is implicated in the pathophysiology of many neurodegenerative disorders; therefore, a deep understanding of its functioning in the nervous system may lead to the development of new therapeutic strategies. The central nervous system (CNS)-specific isoforms of PGC-1α have been recently identified, and many functions of PGC-1α are assigned to the particular cell types of the central nervous system. In the mice CNS, deficiency of PGC-1α disturbed viability and functioning of interneurons and dopaminergic neurons, followed by alterations in inhibitory signaling and behavioral dysfunction. Furthermore, in the ALS rodent model, PGC-1α protects upper motoneurons from neurodegeneration. PGC-1α is engaged in the generation of neuromuscular junctions by lower motoneurons, protection of photoreceptors, and reduction in oxidative stress in sensory neurons. Furthermore, in the glial cells, PGC-1α is essential for the maturation and proliferation of astrocytes, myelination by oligodendrocytes, and mitophagy and autophagy of microglia. PGC-1α is also necessary for synaptogenesis in the developing brain and the generation and maintenance of synapses in postnatal life. This review provides an outlook of recent studies on the role of PGC-1α in various cells in the central nervous system.


Central Nervous System/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Humans , Organelle Biogenesis
...