Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.556
Filter
1.
J Hematol Oncol ; 17(1): 79, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218935

ABSTRACT

Blinatumomab has emerged as a promising component of first-line therapy for acute B-cell precursor lymphoblastic leukemia (BCP-ALL), bolstering treatment efficacy. To mitigate CD19 selection pressure and reduce the incidence of blinatumomab-associated toxicities, pre-treatment chemotherapy is recommended before administering blinatumomab. From September 2022 to December 2023, we conducted a single-arm, multicenter, phase 2 trial (NCT05557110) in newly diagnosed Philadelphia chromosome-negative BCP-ALL (Ph-negative BCP-ALL) patients. Participants received induction treatment with reduced-dose chemotherapy (RDC), comprising idarubicin, vindesine, and dexamethasone over 7 days, followed by 2 weeks of blinatumomab. Those failing to achieve composite complete remission (CRc) received an additional 2 weeks of blinatumomab. The primary endpoint was the CRc rate post initial induction treatment. Of the 35 enrolled patients, 33 (94%) achieved CRc after 2 weeks of blinatumomab, with 30 (86%) achieving measurable residual disease (MRD) negativity. Two patients extended blinatumomab to 4 weeks. With either 2 or 4 weeks of blinatumomab treatment, all patients achieved CR (35/35) and 89% (31/35) were MRD negativity. The median time to CR was 22 days. Immune effector cell-associated neurotoxicity syndrome was limited (14%, all grade 1). Non-hematological adverse events of grade 3 or higher included pneumonia (17%), sepsis (6%), and cytokine release syndrome (9%). With a median follow-up of 11.5 months, estimated 1-year overall survival and 1-year progression-free survival rates were 97.1% and 82.2%, respectively. These findings affirm that RDC followed by blinatumomab is an effective and well-tolerated induction regimen for newly diagnosed Ph-negative BCP-ALL, supporting a shift towards less intensive and more targeted therapeutic approaches. Trial registration: https://www.clinicaltrials.Gov . Identifier NCT05557110.


Subject(s)
Antibodies, Bispecific , Antineoplastic Combined Chemotherapy Protocols , Induction Chemotherapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Male , Female , Adult , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Young Adult , Induction Chemotherapy/methods , Aged , Adolescent , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Dexamethasone/adverse effects , Remission Induction
2.
J Neuroeng Rehabil ; 21(1): 165, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300491

ABSTRACT

BACKGROUND: Robot-Assisted Gait Training (RAGT) is a novel technology widely employed in the field of neurological rehabilitation for patients with subacute stroke. However, the effectiveness of RAGT compared to conventional gait training (CGT) in improving lower extremity function remains a topic of debate. This study aimed to investigate and compare the effects of RAGT and CGT on lower extremity movement in patients with subacute stroke. METHODS: Comprehensive search was conducted across multiple databases, including PubMed, Web of Science, Cochrane Library, EBSCO, Embase, Scopus, China National Knowledge Infrastructure, Wan Fang, SinoMed and Vip Journal Integration Platform. The database retrieval was performed up until July 9, 2024. Meta-analysis was conducted using RevMan 5.4 software. RESULTS: A total of 24 RCTs were included in the analysis. The results indicate that, compared with CGT, RAGT led to significant improvements in the Fugl-Meyer Assessment for Lower Extremity [MD = 2.10, 95%CI (0.62, 3.59), P = 0.005], Functional Ambulation Category[MD = 0.44, 95%CI (0.23, 0.65), P < 0.001], Berg Balance Scale [MD = 4.55, 95%CI (3.00, 6.11), P < 0.001], Timed Up and Go test [MD = -4.05, 95%CI (-5.12, -2.98), P < 0.001], and 6-Minute Walk Test [MD = 30.66, 95%CI (22.36, 38.97), P < 0.001] for patients with subacute stroke. However, it did not show a significant effect on the 10-Meter Walk Test [MD = 0.06, 95%CI (-0.01, 0.14), P = 0.08]. CONCLUSIONS: This study provides evidence that RAGT can enhance lower extremity function, balance function, walking ability, and endurance levels compared to CGT. However, the quality of evidence for improvements in gait speed remains low.


Subject(s)
Lower Extremity , Robotics , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Robotics/methods , Robotics/instrumentation , Gait/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Stroke/physiopathology , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology
3.
Fish Shellfish Immunol ; 154: 109906, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278379

ABSTRACT

Interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms in the innate immune system. The activated PKR performs its antiviral function by inhibiting protein translation and inducing apoptosis. In our previous study, we identified grass carp TARBP2 as an inhibitor of PKR activity, thereby suppressing cell apoptosis. This study aimed to explore the effects of grass carp TARBP2 on PKR activity and cell apoptosis. Grass carp TARBP2 comprises two N-terminal dsRBDs and a C-terminal C4 domain. Subcellular localization analysis conducted in CIK cells revealed that TARBP2-FL (full-length TARBP2), TARBP2-Δ1 (lack of the first dsRBD), and TARBP2-Δ2 (lack of the second dsRBD) are predominantly located in the cytoplasm, while TARBP2-Δ3 (lack of the two dsRBDs) is distributed both in the nucleus and cytoplasm. Colocalization and immunoprecipitation assays confirmed the interaction of TARBP2-FL, TARBP2-Δ1, and TARBP2-Δ2 with PKR, while TARBP2-Δ3 showed no binding. Furthermore, our findings suggested that the inhibitory effect of TARBP2-Δ1 or TARBP2-Δ2 on the PKR-eIF2α pathway is depressed compared to TARBP2-FL. In cell apoptosis assays, it was observed that TARBP2-FL inhibits PKR-mediated cell apoptosis. TARBP2-Δ1 or TARBP2-Δ2 exhibits decreased inhibition to PKR-mediated cell apoptosis, whereas TARBP2-Δ3 nearly completely loses this inhibitory effect. These findings highlight the critical importance of two dsRBDs of TARBP2 in interaction with PKR, as well as in the inhibition of PKR activity, resulting in the suppression of cell apoptosis triggered by prolonged PKR activation.

4.
Pest Manag Sci ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311339

ABSTRACT

BACKGROUND: The invasion of viruses and fungi can cause pathological changes in the normal growth of plants and is an important factor in causing plant infectious diseases. These pathogenic microorganisms can also secrete toxic metabolites, affecting crop quality and posing a threat to human health. In this work, we selected the natural product rutaecarpine as the lead compound to achieve the total synthesis and structural derivation. The antiphytoviral activities of these compounds were systematically studied using tobacco mosaic virus (TMV) as the tested strain, and the structure-activity relationships were summarized. RESULT: The anti TMV activities of compounds 5a, 5n, 6b, and 7c are significantly higher than that of commercial antiviral agent ningnanmycin. We chose 5n for further antiviral mechanism research, and the results showed that it can directly act on viral particles. The molecular docking results further confirmed the interaction of compound 5n and coat protein (CP). These compounds also exhibited broad-spectrum fungicidal activities against eight plant pathogens. Especially compounds 5j and 5p have significant anti-fungal activities (EC50: 5j, 1.76 µg mL-1; 5p, 1.59 µg mL-1) and can be further studied as leads for plant-based anti-fungal agents. CONCLUSION: The natural product rutaecarpine and its derivatives were synthesized, and evaluated for their anti-TMV and fungicidal activities. Compounds 5n and 5p with good activities emerged as new antiviral and anti-fungal candidates, respectively. This study provides important information for the research and development of the novel antiviral and fungicidal agents based on rutaecarpine derivatives. © 2024 Society of Chemical Industry.

5.
NPJ Precis Oncol ; 8(1): 199, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266715

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.

6.
Chem Commun (Camb) ; 60(75): 10390-10393, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39224044

ABSTRACT

A new Ru-catalyzed C-H activation/cyclization reaction for the synthesis of 3-C-glycosyl isocoumarins and 2-glycosyl-4H-chromen-4-ones with carbonyl sulfoxonium ylide glycogen are reported. In this catalytic system, benzoic acid and its derivatives react with carbonyl sulfoxonium ylide glycogen to yield isocoumarin C-glycosides, while 2-hydroxybenzaldehyde substrates react to produce chromone C-glycosides. These reactions were characterized by mild reaction conditions, broad substrate scope, high functional-group compatibility, and high stereoselectivity to yield several high-value isocoumarins and chromone skeleton-containing C-glycosides. The methods were successfully implemented in the context of large-scale reactions and the late-stage modification of complex natural products.

7.
Biochemistry ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320967

ABSTRACT

Synaptotagmin 7 (SYT7), a member of the synaptotagmin family, exhibits high expression in various tumors and is closely associated with patient prognosis. The tight regulation of SYT7 expression assumes paramount significance in the progression of tumorigenesis. In this study, we detected a high GC content in the first 1000 bp of the promoter region of SYT7, suggesting a potential role of the G-quadruplex in its transcriptional regulation. Circular dichroism spectroscopy results showed that -187 to -172 bp sequence can form a typical parallel G-quadruplex structure, and site mutation revealed the critical role of the ninth guanine in its formation. Then, treatment of two ligands of G-quadruplex (TMPyP4 and Pyridostatin) reduced both the expression of SYT7 and subsequent tumor proliferation, demonstrating the potential of the G-quadruplex as a targeted therapy for tumors. By shedding light on the pivotal role of the G-quadruplex in regulating SYT7 transcription, our study not only advances our comprehension of this intricate regulatory mechanism but also emphasizes the significance of SYT7 in tumor proliferation. These findings collectively contribute to a more comprehensive understanding of the interplay between G-quadruplex regulation and SYT7 function in tumor development.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 967-973, 2024.
Article in Chinese | MEDLINE | ID: mdl-39267513

ABSTRACT

OBJECTIVES: To study the effects and mechanisms of tetramethylpyrazine (TMP) on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human coronary artery endothelial cells (HCAEC). METHODS: HCAEC were randomly divided into four groups: the control group (no treatment), the model group (treated with TNF-α, 50 ng/mL for 24 hours), the TMP group (pre-treated with TMP, 80 µg/mL for 12 hours followed by TNF-α treatment for 24 hours), and the SIRT1 inhibitor group (pre-treated with TMP and the specific SIRT1 inhibitor EX527 for 12 hours followed by TNF-α treatment for 24 hours). Cell viability was assessed using the CCK-8 method, lactate dehydrogenase (LDH) activity was measured using an LDH assay kit, reactive oxygen species (ROS) levels were observed using DCFH-DA staining, expression of pyroptosis-related proteins was detected by Western blot, and SIRT1 expression was analyzed using immunofluorescence staining. RESULTS: Compared to the control group, the model group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). Compared to the model group, the TMP group exhibited increased cell viability, decreased LDH activity, ROS level and expression of pyroptosis-related proteins, and increased SIRT1 expression (P<0.05). In comparison to the TMP group, the SIRT1 inhibitor group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). CONCLUSIONS: TMP may attenuate TNF-α-induced inflammatory injury in HCAEC, which is associated with the inhibition of pyroptosis and activation of the SIRT1 signaling pathway.


Subject(s)
Endothelial Cells , Pyrazines , Reactive Oxygen Species , Signal Transduction , Sirtuin 1 , Tumor Necrosis Factor-alpha , Sirtuin 1/metabolism , Sirtuin 1/physiology , Humans , Pyrazines/pharmacology , Signal Transduction/drug effects , Endothelial Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Pyroptosis/drug effects , Cells, Cultured , Inflammation/drug therapy
9.
Brain Res Bull ; : 111072, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243948

ABSTRACT

Statins are well-tolerated and widely available lipid-lowering medications with neuroprotective effects against traumatic brain injury (TBI). However, whether delayed statin therapy starting in the subacute phase promotes recovery after TBI is unknown. Elongation of the very long-chain fatty acid protein 1 (ELOVL1) is involved in astrocyte-mediated neurotoxicity, but its role in TBI and the relationship between ELOVL1 and statins are unclear. We hypothesized that delayed simvastatin treatment promotes neurological functional recovery after TBI by regulating the ELOVL1-mediated production of very long-chain fatty acids (VLCFAs). ICR male mice received daily intragastric administration of 1, 2 or 5mg/kg simvastatin on Days 1-14, 3-14, 5-14, or 7-14 after cryogenic TBI (cTBI). The results showed that simvastatin promoted motor functional recovery in a dose-dependent manner, with a wide therapeutic window of at least 7 days postinjury. Meanwhile, simvastatin inhibited astrocyte and microglial overactivation and glial scar formation, and increased total dendritic length, neuronal complexity and spine density on day 14 after cTBI. The up-regulation of ELOVL1 expression and saturated VLCFAs concentrations in the cortex surrounding the lesion caused by cTBI was inhibited by simvastatin, which was related to the inhibition of the mTOR signaling. Overexpression of ELOVL1 in astrocytes surrounding the lesion using HBAAV2/9-GFAP-m-ELOVL1-3xFlag-EGFP partially attenuated the benefits of simvastatin. These results showed that delayed simvastatin treatment promoted functional recovery and brain tissue repair after TBI through the downregulation of ELOVL1 expression by inhibiting mTOR signaling. Astrocytic ELOVL1 may be a potential target for rehabilitation after TBI.

10.
mBio ; : e0199324, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235230

ABSTRACT

Malassezia globosa is a lipophilic basidiomycetous yeast that occurs abundantly in breast tumors and that may contribute to a shortened overall survival of breast cancer (BRAC) patients, suggesting that the yeast may participate in the carcinogenesis of BRAC. However, the mechanisms involved in the M. globosa-based acceleration of BRAC are unknown. Here, we show that M. globosa can colonize mammary tissue in 7,12-dimethylbenz[a] anthracene-induced mice. The abundance of M. globosa shortened the overall survival and increased the tumor incidence. Transcriptome data illustrated that IL-17A plays a key role in tumor growth due to M. globosa colonization, and tumor-associated macrophage infiltration was elevated during M. globosa colonization which triggers M2 polarization of macrophages via toll-like receptors 4/nuclear factor kappa-B (Nf-κB) signaling. Our results show that the expression of sphingosine kinase 1 (Sphk1) is increased in breast tumors after inoculation with M. globosa. Moreover, we discovered that Sphk1-specific small interfering RNA blocked the formation of lipid droplets, which can effectively alleviate the expression of the signal transducer and activator of the transcription 3 (STAT3)/Nf-κB pathway. Taken together, our results demonstrate that M. globosa could be a possible factor for the progression of BRAC. The mechanisms by which M. globosa promotes BRAC development involve the IL-17A/macrophage axis. Meanwhile, Sphk1 overexpression was induced by M. globosa infection, which also promoted the proliferation of MCF-7 cells.IMPORTANCELiterature has suggested that Malassezia globosa is associated with breast tumors; however, this association has not been confirmed. Here, we found that M. globosa colonizes in breast fat pads leading to tumor growth. As a lipophilic yeast, the expression of sphingosine kinase 1 (Sphk1) was upregulated to promote tumor growth after M. globosa colonization. Moreover, the IL-17A/macrophages axis plays a key role in mechanisms involved in the M. globosa-induced breast cancer acceleration from the tumor immune microenvironment perspective.

11.
Small ; : e2405400, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235363

ABSTRACT

The development of alternative conductive polymers for the well-known poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is of great significance for improving the stability in long-term using and high-temperature environments. Herein, an innovative PEDOT:S-ANF aqueous dispersion is successfully prepared by using sulfamic acid (SA) to modified aramid nanofibers (S-ANF) as an alternative dispersant for PSS and the subsequent in situ polymerization of PEDOT. Thanks to the excellent film forming ability and surface negative groups of S-ANF, the PEDOT:S-ANF films show comparable tensile strength and elongation to unmodified PEDOT:ANF. Meanwhile, PEDOT:S-ANF has a high conductivity of 27.87 S cm-1, which is more than 20 times higher than that of PEDOT:PSS. The film exhibits excellent electromagnetic interference (EMI) shielding and thermoelectric performance, with a shielding effectiveness (SE) of 31.14 dB and a power factor (PF) of 0.43 µW m-1K-2. As a substitute for PSS, S-ANF exhibits significant structural and physicochemical properties, resulting in excellent chemical and thermal stability. Even under harsh conditions such as immersing to 0.1 M HCl, 0.1 M NaOH, and 3.5% NaCl solution, or high temperature conditions, the PEDOT:S-ANF films still maintain exceptional EMI shielding performance. Therefore, this multifunctional conductive polymer exhibits enormous potential and even proves its reliability in extreme situations.

12.
Int J Biol Macromol ; 279(Pt 4): 135508, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260630

ABSTRACT

Kudzu (Pueraria lobata) root contains abundant starch, but the physicochemical properties of kudzu starch are not well understood. In this study, we compared the compositions and physicochemical properties of starches isolated from six Pueraria accessions in China. Caige starch exhibited the highest purity (96.99 %) and amylose content (24.76 %), while Yege starch contained higher levels of puerarin (493.37 µg/g) and daidzein (38.68 µg/g). All kudzu starches were rich in resistant starch, with RS2 content ranging from 38.61 % to 46.22 % and RS3 content from 3.59 % to 6.04 %. The granules of kudzu starches varied in morphology, with Yege starch featuring larger polygonal granules. The kudzu starches presented either A-type or A-type-like C-type diffraction patterns. Caige starch had a higher IR2 value (1.28), higher gelatinization temperatures, wider temperature ranges, and greater enthalpy changes. Yege (JX) starch exhibited the highest peak viscosity but the lowest setback viscosity and pasting temperature. Fenge starch showed the highest final viscosity, with Fenge (ZJ) starch demonstrating the highest crystallinity (25.7 %) and IR1 value (0.80). These results indicated that kudzu starches derived from various Pueraria species possess unique structural and physicochemical properties, which provide significant potential for applications in food and other industrial fields.

13.
Chem Biodivers ; : e202401871, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223085

ABSTRACT

Two new indole-diterpenoids, penpaxilloids F and G (1 and 2), along with 11 known analogues (3-13), were isolated from the marine fungus Penicillium sp. ZYX-Z-718. The structures of the new compounds were identified by extensive spectroscopic analyses including HR-ESI-MS, UV, and NMR, as well as theoretical NMR chemical shifts and ECD calculations. Compounds 6 and 10 showed antibacterial activity against Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis, and MRSA with MIC values ranging from 16.0 to 32.0 µg/mL.

14.
Org Biomol Chem ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291542

ABSTRACT

Treatment of alkyl α-(N-heteroaryl)-α-diazoacetates with alkylating reagents affords diazoacetate N-heteroarenium salts. These novel 'onium' diazo compounds are mostly yellow solids, displaying increased thermal and acid stability. Their tetrafluoroborates undergo rhodium catalyzed [2 + 1] and Doyle-Kirmse reactions under mild conditions, suggesting the N-quaternization an effective means of elimination of N-coordination caused catalyst toxicity.

15.
Cancer Med ; 13(17): e70161, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39240182

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have revolutionized Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) treatment. The combination of blinatumomab and a TKI in the frontline setting has shown the safety and efficacy of the chemotherapy-free treatment approach in patients with Ph + ALL. This retrospective analysis included 19 patients with Ph + ALL and Ph-like ALL treated with the combination of blinatumomab and a TKI. Of the 14 newly diagnosed patients, the overall response, complete remission (CR), and molecular response (CMR) rates after one cycle of blinatumomab were 100% (10/10), 90% (9/10), and 57% (8/14), respectively. Of the five relapsed patients, the CR and CMR rates were 50% (2/4) and 40% (2/5). Blinatumomab in combination with TKIs is safe and effective and hence this combination therapy could be a viable therapeutic option in front-line treatment of patients with Ph + ALL.


Subject(s)
Antibodies, Bispecific , Antineoplastic Combined Chemotherapy Protocols , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Kinase Inhibitors , Humans , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/adverse effects , Female , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Male , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Adult , Middle Aged , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Aged , Treatment Outcome , Young Adult , Adolescent
16.
BMC Biol ; 22(1): 190, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218865

ABSTRACT

BACKGROUND: Hemiptera is the fifth species-rich order of insects and the most species-rich order of hemimetabolous insects, including numerous insect species that are of agricultural or medical significance. Despite much effort and recent advance in inferring the Hemiptera phylogeny, some high-level relationships among superfamilies remain controversial. RESULTS: We sequenced the genomes of 64 hemipteran species from 15 superfamilies and the transcriptomes of two additional scale insect species, integrating them with existing genomic and transcriptomic data to conduct a comprehensive phylogenetic analysis of Hemiptera. Our datasets comprise an average of 1625 nuclear loci of 315 species across 27 superfamilies of Hemiptera. Our analyses supported Cicadoidea and Cercopoidea as sister groups, with Membracoidea typically positioned as the sister to Cicadoidea + Cercopoidea. In most analyses, Aleyrodoidea was recovered as the sister group of all other Sternorrhyncha. A sister-group relationship was supported between Coccoidea and Aphidoidea + Phylloxeroidea. These relationships were further supported by four-cluster likelihood mapping analyses across diverse datasets. Our ancestral state reconstruction indicates phytophagy as the primary feeding strategy for Hemiptera as a whole. However, predation likely represents an ancestral state for Heteroptera, with several phytophagous lineages having evolved from predatory ancestors. Certain lineages, like Lygaeoidea, have undergone a reversal transition from phytophagy to predation. Our divergence time estimation placed the diversification of hemipterans to be between 60 and 150 million years ago. CONCLUSIONS: By expanding phylogenomic taxon sampling, we clarified the superfamily relationships within the infraorder Cicadomorpha. Our phylogenetic analyses supported the sister-group relationship between the superfamilies Cicadoidea and Cercopoidea, and the superfamily Membracoidea as the sister to Cicadoidea + Cercopoidea. Our divergence time estimation supported the close association of hemipteran diversification with the evolutionary success and adaptive radiation of angiosperms during the Cretaceous period.


Subject(s)
Genome, Insect , Hemiptera , Phylogeny , Transcriptome , Animals , Hemiptera/genetics , Hemiptera/classification , Genomics , Evolution, Molecular , Biological Evolution
17.
Phytochemistry ; 228: 114246, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39163914

ABSTRACT

Centella asiatica (L.) Urban is a medical plant rich in triterpenoids, frequently used in Asia to treat skin conditions such as acne. To search for anti-photoaging agents, 16 known triterpenoids and five undescribed triterpenoids, including three ursane, one oleanane and one nor-ursane were isolated from the whole herb of C. asiatica. The structures and relative stereochemistry of these compounds were elucidated by detailed NMR spectra and HRESIMS. Compounds 1 and 2 were isomers of ursane-type and oleane-type triterpenes with rare aldehyde groups on C-23. Compound 4 was a unique example of a nor-ursane type triterpenoid. The Ultraviolet B (UVB) induced HaCaT cell damage model was used to measure the in vitro anti-photoaging activity of all 21 compounds. Twenty compounds significantly increased HaCaT viability and inhibited lactate dehydrogenase (LDH) release after UVB exposure. These findings highlight the protective effects of C. asiatica-derived triterpenoids against UVB damage and indicate their potential as natural agents that can protect the skin against photoaging.


Subject(s)
Centella , Triterpenes , Ultraviolet Rays , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Centella/chemistry , Humans , Cell Survival/drug effects , Molecular Structure , Skin Aging/drug effects , Structure-Activity Relationship , Dose-Response Relationship, Drug , L-Lactate Dehydrogenase/metabolism , HaCaT Cells
18.
Int J Biol Macromol ; 278(Pt 2): 134491, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111495

ABSTRACT

The macrophage to myofibroblasts transition (MMT) has been reported as a newly key target in renal fibrosis. Lycium barbarum L. is a traditional Chinese medicine for improving renal function, in which its polysaccharides (LBPs) are the mainly active components. However, whether the role of LBPs in treating renal fibrosis is related to MMT process remain unclear. The purpose of this study was to explore the relationship between the regulating effect on MMT process and the anti-fibrotic effect of LBPs. Initially, small molecular weight LBPs fractions (LBP-S) were firstly isolated via Sephadex G-100 column. Then, the potent inhibitory effect of LBP-S on MMT process was revealed on bone marrow-derived macrophages (BMDM) model induced by TGF-ß. Subsequently, the chemical structure of LBP-S was elucidated through monosaccharide, methylation and NMR spectrum analysis. In vivo biodistribution characteristics studies demonstrated that LBP-S exhibited effectively accumulation in kidney via intraperitoneal administration. Finally, LBP-S showed a satisfactory anti-renal fibrotic effect on unilateral ureteral obstruction operation (UUO) mice, which was significantly reduced following macrophage depletion. Overall, our findings indicated that LPB-S could alleviate renal fibrosis through regulating MMT process and providing new candidate agents for chronic kidney disease (CKD) related fibrosis treatment.


Subject(s)
Fibrosis , Lycium , Macrophages , Myofibroblasts , Polysaccharides , Animals , Macrophages/drug effects , Macrophages/metabolism , Mice , Lycium/chemistry , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mannans/pharmacology , Mannans/chemistry , Male , Kidney/drug effects , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
19.
Anxiety Stress Coping ; : 1-17, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098919

ABSTRACT

BACKGROUND AND OBJECTIVES: During large-scale stressful events such as pandemics, situational uncertainty and daily routine disruptions increase anxiety prevalence, underscoring the need for research on approaches to promote effective coping. This study focused on the psychological function of benefit finding in the context of the COVID-19 pandemic. DESIGN AND METHODS: Both Study 1a (a cross-sectional survey of 567 Chinese adults) and Study 1b (a two-wave longitudinal survey of 406 Chinese adults) examined the relationship between benefit finding and anxiety, with hope as the mediator. Study 2 used an interventional design to examine the efficacy of daily benefit-finding writing among 129 Chinese college students. RESULTS: In Studies 1a and 1b, benefit finding was positively associated with anxiety, which was mediated by hope. Study 2 showed that daily writing tasks significantly promoted benefit finding. Hope mediated the relationship between benefit finding and anxiety at both the within- and between-person levels. CONCLUSIONS: Benefit finding can foster hope and relieve anxiety. Daily benefit-finding activities, which can be conducted online, can help improve mental health during pandemics.

20.
Ann Hematol ; 103(9): 3483-3491, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088061

ABSTRACT

Eltrombopag combined with immunosuppressive therapy (IST) was superior to IST alone for severe aplastic anemia (SAA) in the previous studies. But in China, horse antithymocyte globulin (hATG) is not available, instead, we use rabbit ATG (rATG). Here, we compared the efficacy and safety of IST (rATG combined with cyclosporine) combined with or without eltrombopag for the first-line treatment of SAA and very severe aplastic anemia (VSAA). A total of 371 patients in ten institutions in China from April 1, 2017 to December 1, 2022 were enrolled. The overall response (OR) rate at 3 months (54.2% vs. 41%; P = 0.046), the complete response (CR) (31.3% vs. 19.4%; P = 0.041) and OR (78.3% vs. 51.1%; P < 0.0001) rates at 6 months were significantly higher with IST combined with eltrombopag than with IST alone in SAA patients. While in VSAA patients, the addition of eltrombopag to IST only increased the CR rate at 6 months (29.8% vs. 9.43%; P = 0.010). Liver injury increased significantly in groups treated with IST combined with eltrombopag (P < 0.05). Serious treatment-related toxicities were similar (P > 0.05). In patients with SAA, 3-year failure-free survival (FFS) of eltrombopag combined with IST group was significantly higher than that of IST group (70.7 ± 5.3% vs. 50.3 ± 3.9%; P = 0.007). In patients with VSAA, the addition of eltrombopag significantly improved 3-year overall survival (OS) (82.2 ± 5.7% vs. 57.3 ± 7.2%; P = 0.020). Our findings suggested that IST combined with eltrombopag could improve the hematological recovery of newly diagnosed SAA without increasing severe toxicities. But in VSAA, the addition of eltrombopag seemed to show no other improvement to efficacy except the CR rate at 6 months.


Subject(s)
Anemia, Aplastic , Antilymphocyte Serum , Benzoates , Hydrazines , Immunosuppressive Agents , Pyrazoles , Anemia, Aplastic/drug therapy , Anemia, Aplastic/mortality , Benzoates/therapeutic use , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Humans , Hydrazines/therapeutic use , Hydrazines/administration & dosage , Hydrazines/adverse effects , Male , Female , Adult , Middle Aged , Adolescent , Immunosuppressive Agents/therapeutic use , Antilymphocyte Serum/therapeutic use , Antilymphocyte Serum/administration & dosage , Young Adult , Aged , Retrospective Studies , Drug Therapy, Combination , Child , Treatment Outcome , Severity of Illness Index , Child, Preschool , Cyclosporine/therapeutic use , Cyclosporine/administration & dosage , China/epidemiology , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL