Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(5): 3153-3162, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38693895

ABSTRACT

A photoacoustic (PA) imaging technique using the second near-infrared (NIR-II) window has attracted more and more attention because of its merits of deeper penetration depth and higher signal-to-noise (S/N) ratio than that using the first near-infrared (NIR-I) one. However, the design and development of high-performance PA imaging contrast agents in the NIR-II window is still a challenge. A semiconducting polymer, constructed by asymmetric units, exhibits regiorandom characteristics that effectively increase the distortion of the backbone. This increase in the degree of twist can regulate the twisted intramolecular charge transfer (TICT) effect, resulting in an enhancement of the PA signal. In this paper, an asymmetric structural acceptor strategy is developed to improve the PA signals of the resulting semiconducting polymer (PATQ-MP) in the NIR-II window with improved brightness, higher S/N ratio, and better photothermal conversion efficiency compared to polymers with the same main-chain structure containing a symmetric acceptor. DFT analysis showed that PATQ-MP containing an asymmetric acceptor monomer had a larger dihedral angle, which effectively improved the PA signal intensity by enhancing the TICT effect. The PEG-encapsulated PATQ-MP nanoparticles exhibit promising performance in the PA imaging of mouse tumors in vivo, demonstrating the clear identification of microvessels as small as 100 µm along with rapid metabolism within a span of 5 h. Therefore, this work provides a unique molecular design strategy for improving the signal intensity of PA imaging in the NIR-II window.


Subject(s)
Photoacoustic Techniques , Polymers , Semiconductors , Photoacoustic Techniques/methods , Animals , Mice , Polymers/chemistry , Quinoxalines/chemistry , Female , Humans , Thiadiazoles/chemistry , Infrared Rays , Mice, Nude , Mice, Inbred BALB C , Contrast Media/chemistry
2.
BMC Vet Res ; 17(1): 114, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33678162

ABSTRACT

BACKGROUND: Pyroptosis plays a pivotal role in the pathogenesis of many inflammatory diseases. The molecular mechanism by which pyroptosis is induced in macrophages following infection with pathogenic E. coli high pathogenicity island (HPI) will be evaluated in our study. RESULTS: After infection with the HPI+/HPI- strains and LPS, decreased macrophage cell membrane permeability and integrity were demonstrated with propidium iodide (PI) staining and the lactate dehydrogenase (LDH) assay. HPI+/HPI--infection was accompanied by upregulated expression levels of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD, with significantly higher levels detected in the HPI+ group compared to those in the HPI- group (P < 0.01 or P < 0.05). HPI+ strain is more pathogenic than HPI- strain. CONCLUSION: Our findings indicate that pathogenic E. coli HPI infection of Saba pigs causes pyroptosis of macrophages characterized by upregulated expression of pyroptosis key factors in the NLRP3/ASC/caspase-1 signaling pathway, direct cell membrane pore formation, and secretion of the inflammatory factor IL-1ß and IL-18 downstream of NLRP3 and caspase-1 activation to enhance the inflammatory response.


Subject(s)
Escherichia coli/pathogenicity , Genomic Islands , Macrophages/microbiology , Pyroptosis , Animals , Apoptosis Regulatory Proteins/metabolism , Caspase 1/metabolism , Cell Line , Cell Membrane/pathology , China , Escherichia coli/genetics , Gene Expression Regulation , Inflammation , Lipopolysaccharides/pharmacology , Macrophages/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Swine
3.
Tumour Biol ; 39(5): 1010428317705330, 2017 May.
Article in English | MEDLINE | ID: mdl-28513299

ABSTRACT

Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Cisplatin/administration & dosage , Diterpenes/administration & dosage , Ki-67 Antigen/biosynthesis , Mouth Neoplasms/drug therapy , Tumor Suppressor Protein p53/biosynthesis , Apoptosis/drug effects , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Phosphorylation , Tumor Suppressor Protein p53/administration & dosage , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL