Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915580

ABSTRACT

The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.

2.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464021

ABSTRACT

The rising quality and amount of multi-omic data across biomedical science demands that we build innovative solutions to harness their collective discovery potential. From publicly available repositories, we have assembled and curated a compendium of gene-level transcriptomic data focused on mammalian excitatory neurogenesis in the neocortex. This collection is open for exploration by both computational and cell biologists at nemoanalytics.org, and this report forms a demonstration of its utility. Applying our novel structured joint decomposition approach to mouse, macaque and human data from the collection, we define transcriptome dynamics that are conserved across mammalian excitatory neurogenesis and which map onto the genetics of human brain structure and disease. Leveraging additional data within NeMO Analytics via projection methods, we chart the dynamics of these fundamental molecular elements of neurogenesis across developmental time and space and into postnatal life. Reversing the direction of our investigation, we use transcriptomic data from laminar-specific dissection of adult human neocortex to define molecular signatures specific to excitatory neuronal cell types resident in individual layers of the mature neocortex, and trace their emergence across development. We show that while many lineage defining transcription factors are most highly expressed at early fetal ages, the laminar neuronal identities which they drive take years to decades to reach full maturity. Finally, we interrogated data from stem-cell derived cerebral organoid systems demonstrating that many fundamental elements of in vivo development are recapitulated with high-fidelity in vitro, while specific transcriptomic programs in neuronal maturation are absent. We propose these analyses as specific applications of the general approach of combining joint decomposition with large curated collections of analysis-ready multi-omics data matrices focused on particular cell and disease contexts. Importantly, these open environments are accessible to, and must be fueled with emerging data by, cell biologists with and without coding expertise.

3.
Science ; 382(6667): eadf3786, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824652

ABSTRACT

During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.


Subject(s)
Neural Stem Cells , Neurogenesis , Telencephalon , Animals , Female , Pregnancy , Macaca , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Neurons/physiology , Telencephalon/cytology , Telencephalon/embryology , Neurogenesis/genetics , Galanin-Like Peptide/metabolism , Gene Expression Regulation, Developmental , Mental Disorders/genetics , Nervous System Diseases/genetics , Brain Neoplasms/genetics
4.
Neurochem Res ; 46(10): 2512-2524, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33725233

ABSTRACT

Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century. However, there are still questions regarding how and when NEC transform into RGC or about the function of intermediate filaments such as glial fibrillary acidic protein (GFAP) in RGCs and their dynamics during neurogenesis. For example, it is not clear why RGCs in primates, including humans, express GFAP at the onset of cortical neurogenesis while in rodents it is expressed when it is essentially complete. Based on an ultrastructural analysis of GFAP expression and cell morphology of dividing progenitors in the developing neocortex of the macaque monkey, we show that RGCs become the main progenitor in the developing cerebrum by the start of neurogenesis, as all dividing cells show glial features such as GFAP expression and lack of tight junctions. Also, our data suggest that RGCs retract their apical process during mitosis. We discuss our findings in the context of the role and molecular characteristics of RGCs in the vertebrate brain, their differences with NECs and their dynamic behavior during the process of neurogenesis.


Subject(s)
Ependymoglial Cells/metabolism , Neurogenesis/physiology , Animals , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Surface Extensions/metabolism , Glial Fibrillary Acidic Protein/metabolism , Macaca , Nerve Tissue Proteins/metabolism , Neuroepithelial Cells/metabolism
5.
Cell Rep ; 31(5): 107599, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375049

ABSTRACT

Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon.


Subject(s)
Embryonic Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/metabolism , Cell Differentiation/physiology , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Signal Transduction/physiology
6.
Nat Commun ; 11(1): 462, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974374

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are a powerful model of neural differentiation and maturation. We present a hiPSC transcriptomics resource on corticogenesis from 5 iPSC donor and 13 subclonal lines across 9 time points over 5 broad conditions: self-renewal, early neuronal differentiation, neural precursor cells (NPCs), assembled rosettes, and differentiated neuronal cells. We identify widespread changes in the expression of both individual features and global patterns of transcription. We next demonstrate that co-culturing human NPCs with rodent astrocytes results in mutually synergistic maturation, and that cell type-specific expression data can be extracted using only sequencing read alignments without cell sorting. We lastly adapt a previously generated RNA deconvolution approach to single-cell expression data to estimate the relative neuronal maturity of iPSC-derived neuronal cultures and human brain tissue. Using many public datasets, we demonstrate neuronal cultures are maturationally heterogeneous but contain subsets of neurons more mature than previously observed.


Subject(s)
Cell Differentiation/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Neural Stem Cells/physiology , Transcriptome , Algorithms , Animals , Astrocytes/cytology , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Databases, Genetic , Gene Expression Regulation , Humans , Models, Neurological , Neural Stem Cells/cytology , Neurons/cytology , Neurons/physiology , Rats
7.
Proc Natl Acad Sci U S A ; 116(14): 7089-7094, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30894491

ABSTRACT

The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6+/Hopx+ outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.


Subject(s)
Cerebrum/growth & development , Cerebrum/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neurogenesis/physiology , Neurons/metabolism , Animals , Astrocytes/metabolism , Cerebrum/cytology , Cerebrum/embryology , Embryo, Mammalian , Homeodomain Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Macaca , Oligodendroglia/cytology , Oligodendroglia/metabolism , PAX6 Transcription Factor/metabolism , Primates , Tumor Suppressor Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 115(40): 10142-10147, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224493

ABSTRACT

The primary stem cells of the cerebral cortex are the radial glial cells (RGCs), and disturbances in their operation lead to myriad brain disorders in all mammals from mice to humans. Here, we found in mice that maternal gestational obesity and hyperglycemia can impair the maturation of RGC fibers and delay cortical neurogenesis. To investigate potential mechanisms, we used optogenetic live-imaging approaches in embryonic cortical slices. We found that Ca2+ signaling regulates mitochondrial transport and is crucial for metabolic support in RGC fibers. Cyclic intracellular Ca2+ discharge from localized RGC fiber segments detains passing mitochondria and ensures their proper distribution and enrichment at specific sites such as endfeet. Impairment of mitochondrial function caused an acute loss of Ca2+ signaling, while hyperglycemia decreased Ca2+ activity and impaired mitochondrial transport, leading to degradation of the RGC scaffold. Our findings uncover a physiological mechanism indicating pathways by which gestational metabolic disturbances can interfere with brain development.


Subject(s)
Calcium Signaling , Cerebral Cortex/embryology , Diabetes, Gestational/metabolism , Glucose/metabolism , Hyperglycemia/embryology , Neurogenesis , Neuroglia/metabolism , Animals , Cerebral Cortex/pathology , Diabetes, Gestational/genetics , Diabetes, Gestational/pathology , Female , Hyperglycemia/genetics , Hyperglycemia/pathology , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Neuroglia/pathology , Pregnancy
9.
Stem Cells ; 32(3): 770-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24155149

ABSTRACT

The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.


Subject(s)
Cyclin D/genetics , Fibroblast Growth Factor 2/pharmacology , Insulin/pharmacology , Multipotent Stem Cells/cytology , Neural Stem Cells/metabolism , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects , Cyclin D/metabolism , DNA/biosynthesis , Female , Intracellular Space/drug effects , Intracellular Space/enzymology , Mice , Mice, Inbred C57BL , Models, Biological , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Transcription, Genetic/drug effects
10.
Proc Natl Acad Sci U S A ; 108(29): E314-22, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21715654

ABSTRACT

Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1(i/i) fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chromosomal aberrations and aneuploidy in very early-passage Prep1(i/i) MEFs. In human fibroblasts, acute Prep1 down-regulation by siRNA induces DNA damage response, like in Prep1(i/i) MEFs, together with an increase in heterochromatin-associated modifications: rapid increase of histone methylation and decreased transcription of satellite DNA. Ectopic expression of Prep1 rescues DNA damage and heterochromatin methylation. Inhibition of Suv39 activity blocks the chromatin but not the DNA damage phenotype. Finally, Prep1 deficiency facilitates cell immortalization, escape from oncogene-induced senescence, and H-Ras(V12)-dependent transformation. Importantly, the latter can be partially rescued by restoration of Prep1 level. The results show that the tumor suppressor role of Prep1 is associated with the maintenance of genomic stability.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation/physiology , Genomic Instability/physiology , Homeodomain Proteins/physiology , Transcription Factors/physiology , Animals , Chromatin Immunoprecipitation , Comet Assay , Cytogenetic Analysis , DNA Damage/genetics , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Gamma Rays , Gene Expression Regulation/genetics , Heterochromatin/genetics , Heterochromatin/radiation effects , Homeodomain Proteins/metabolism , Humans , Mice , Oligonucleotides/genetics , Transcription Factors/metabolism
11.
Nucleic Acids Res ; 38(11): 3595-604, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20110257

ABSTRACT

PREP1 (PKNOX1) maps in the Down syndrome (DS) critical region of chromosome 21, is overexpressed in some DS tissues and might be involved in the DS phenotype. By using fibroblasts from DS patients and by overexpressing Prep1 in F9 teratocarcinoma and Prep1(i/i) MEF to single out the role of the protein, we report that excess Prep1 increases the sensitivity of cells to genotoxic stress and the extent of the apoptosis directly correlates with the level of Prep1. The apoptotic response of Prep1-overexpressing cells is mediated by the pro-apoptotic p53 protein that we show is a direct target of Prep1, as its depletion reverts the apoptotic phenotype. The induction of p53 overcomes the anti-apoptotic role of Bcl-X(L), previously shown to be also a Prep1 target, the levels of which are increased in Prep1-overexpressing cells as well. Our results provide a rationale for the involvement of PREP1 in the apoptotic phenotype of DS tissues and indicate that differences in Prep1 level can have drastic effects.


Subject(s)
Apoptosis , Down Syndrome/metabolism , Homeodomain Proteins/metabolism , Animals , Cells, Cultured , Down Syndrome/pathology , Embryonal Carcinoma Stem Cells , Etoposide/toxicity , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Genetic Vectors , Homeodomain Proteins/genetics , Humans , Mice , Phenotype , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays , bcl-X Protein/genetics , bcl-X Protein/metabolism
12.
Mol Cell Biol ; 29(5): 1143-51, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19103748

ABSTRACT

The Prep1 homeodomain transcription factor is essential in embryonic development. Prep1 hypomorphic mutant mouse (Prep1(i/i)) embryos (embryonic day 9.5) display an increased terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling reaction compared to wild-type (WT) littermates. Prep1(i/i) mouse embryo fibroblasts (MEFs) show an increased basal level of annexin V binding activity, reduction of the mitochondrial-membrane potential, and increased caspase 9 and 3 activation, indicating increased apoptosis. Prep1(i/i) MEFs also respond faster than WT MEFs to genotoxic stress, indicating increased activation of the intrinsic apoptotic pathways. We did not observe an increase in p53 or an abnormal p53 response to apoptotic stimuli. However, hypomorphic MEFs have decreased endogenous levels of antiapoptotic Bcl-X(L) mRNA and protein, and Bcl-x overexpression rescues the defect of Prep1(i/i) MEFs. Using transient transfections and chromatin immunoprecipitation, we identified the Bcl-x promoter as a novel target of Prep1. Thus, Prep1 directly controls mitochondrial homeostasis (and the apoptotic potential) by modulating Bcl-x gene expression.


Subject(s)
Apoptosis , Gene Expression Regulation , Homeodomain Proteins/physiology , bcl-X Protein/genetics , Animals , Cells, Cultured , Embryo, Mammalian , Fibroblasts/cytology , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Promoter Regions, Genetic , Signal Transduction
13.
Mol Cell Biol ; 26(15): 5650-62, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16847320

ABSTRACT

The interaction of Prep1 and Pbx homeodomain transcription factors regulates their activity, nuclear localization, and likely, function in development. To understand the in vivo role of Prep1, we have analyzed an embryonic lethal hypomorphic mutant mouse (Prep1(i/i)). Prep1(i/i) embryos die at embryonic day 17.5 (E17.5) to birth with an overall organ hypoplasia, severe anemia, impaired angiogenesis, and eye anomalies, particularly in the lens and retina. The anemia correlates with delayed differentiation of erythroid progenitors and may be, at least in part, responsible for intrauterine death. At E14.5, Prep1 is present in fetal liver (FL) cMyb-positive cells, whose deficiency causes a marked hematopoietic phenotype. Prep1 is also localized to FL endothelial progenitors, consistent with the observed angiogenic phenotype. Likewise, at the same gestational day, Prep1 is present in the eye cells that bear Pax6, implicated in eye development. The levels of cMyb and Pax6 in FL and in the retina, respectively, are significantly decreased in Prep1(i/i) embryos, consistent with the hematopoietic and eye phenotypes. Concomitantly, Prep1 deficiency results in the overall decrease of protein levels of its related family member Meis1 and its partners Pbx1 and Pbx2. As both Prep1 and Meis interact with Pbx, the overall Prep1/Meis-Pbx DNA-binding activity is strongly reduced in whole Prep1(i/i) embryos and their organs. Our data indicate that Prep1 is an essential gene that acts upstream of and within a Pbx-Meis network that regulates multiple aspects of embryonic development.


Subject(s)
Embryo, Mammalian , Homeodomain Proteins/metabolism , Mutation , Neoplasm Proteins/metabolism , Phenotype , Transcription Factors/metabolism , Allantois/cytology , Anemia/genetics , Animals , Cells, Cultured , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Eye/anatomy & histology , Eye/embryology , Eye/pathology , Female , Gene Targeting , Gestational Age , Hematopoietic Stem Cells/physiology , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/genetics , Neovascularization, Physiologic , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Pre-B-Cell Leukemia Transcription Factor 1 , Pregnancy , RNA, Messenger/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...