Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroendocrinology ; 114(7): 681-697, 2024.
Article in English | MEDLINE | ID: mdl-38631315

ABSTRACT

INTRODUCTION: Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS: Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS: Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION: Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.


Subject(s)
GABAergic Neurons , Liraglutide , Receptors, Retinoic Acid , Animals , Male , GABAergic Neurons/metabolism , Mice , Receptors, Retinoic Acid/metabolism , Receptors, Retinoic Acid/agonists , Liraglutide/pharmacology , Mice, Inbred C57BL , Leptin/metabolism , Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Hypoglycemic Agents/pharmacology
2.
Front Endocrinol (Lausanne) ; 14: 1202089, 2023.
Article in English | MEDLINE | ID: mdl-37448468

ABSTRACT

Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.


Subject(s)
Hypothalamus , Obesity , Humans , Hypothalamus/physiology , Arcuate Nucleus of Hypothalamus , Brain , Eating
3.
J Neurochem ; 165(4): 467-486, 2023 05.
Article in English | MEDLINE | ID: mdl-36648204

ABSTRACT

The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.


Subject(s)
Leptin , Melanocortins , Melanocortins/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus , Energy Metabolism/physiology
4.
Biochimie ; 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36122808

ABSTRACT

Coordinated detection of changes in metabolic state by the nervous system is fundamental for survival. Hypothalamic pro-opiomelanocortin (POMC) neurons play a critical role in integrating metabolic signals, including leptin levels. They also coordinate adaptative responses and thus represent an important relay in the regulation of energy balance. Despite a plethora of work documenting the effects of individual hormones, nutrients, and neuropeptides on POMC neurons, the importance for crosstalk and additive effects between such signaling molecules is still underexplored. The ability of the metabolic state and the concentrations of nutrients, such as glucose, to influence leptin's effects on POMC neurons appears critical for understanding the function and complexity of this regulatory network. Here, we summarize the current knowledge on the effects of leptin on POMC neuron electrical excitability and discuss factors potentially contributing to variability in these effects, with a particular focus on the mouse models that have been developed and the importance of extracellular glucose levels. This review highlights the importance of the metabolic "environment" for determining hypothalamic neuronal responsiveness to metabolic cues and for determining the fundamental effects of leptin on the activity of hypothalamic POMC neurons.

5.
Mol Metab ; 6(10): 1103-1112, 2017 10.
Article in English | MEDLINE | ID: mdl-29031712

ABSTRACT

OBJECTIVE: The mitochondrial uncoupling agent 2,4-dinitrophenol (DNP), historically used as a treatment for obesity, is known to cross the blood-brain-barrier, but its effects on central neural circuits controlling body weight are largely unknown. As hypothalamic melanocortin neuropeptide Y/agouti-related protein (NPY/AgRP) and pro-opiomelanocortin (POMC) neurons represent key central regulators of food intake and energy expenditure we investigated the effects of DNP on these neurons, food intake and energy expenditure. METHOD: C57BL/6 and melanocortin-4 receptor (MC4R) knock-out mice were administered DNP intracerebroventricularly (ICV) and the metabolic changes were characterized. The specific role of NPY and POMC neurons and the ionic mechanisms mediating the effects of uncoupling were examined with in vitro electrophysiology performed on NPY hrGFP or POMC eGFP mice. RESULTS: Here we show DNP-induced differential effects on melanocortin neurons including inhibiting orexigenic NPY and activating anorexigenic POMC neurons through independent ionic mechanisms coupled to mitochondrial function, consistent with an anorexigenic central effect. Central administration of DNP induced weight-loss, increased BAT thermogenesis and browning of white adipose tissue, and decreased food intake, effects that were absent in MC4R knock-out mice and blocked by the MC4R antagonist, AgRP. CONCLUSION: These data show a novel central anti-obesity mechanism of action of DNP and highlight the potential for selective melanocortin mitochondrial uncoupling to target metabolic disorders.


Subject(s)
2,4-Dinitrophenol/pharmacology , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism , Adipose Tissue, Brown/metabolism , Animals , Body Weight/drug effects , Eating/drug effects , Energy Metabolism/drug effects , Male , Melanocortins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/physiology , Neurons/drug effects , Obesity/metabolism , Receptor, Melanocortin, Type 4/metabolism , Receptors, Melanocortin/physiology , Thermogenesis/physiology , Uncoupling Protein 1/drug effects , Uncoupling Protein 1/physiology , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL