Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Polymers (Basel) ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932052

ABSTRACT

In this study, titanium nitride (TiN) was selected as an additive to a high-density polyethylene (HDPE) matrix material, and four different nanocomposites were created with TiN loadings of 2.0-8.0 wt. % and a 2 wt. % increase step between them. The mixtures were made, followed by the fabrication of the respective filaments (through a thermomechanical extrusion process) and 3D-printed specimens (using the material extrusion (MEX) technique). The manufactured specimens were subjected to mechanical, thermal, rheological, structural, and morphological testing. Their results were compared with those obtained after conducting the same assessments on unfilled HDPE samples, which were used as the control samples. The mechanical response of the samples improved when correlated with that of the unfilled HDPE. The tensile strength improved by 24.3%, and the flexural strength improved by 26.5% (composite with 6.0 wt. % TiN content). The dimensional deviation and porosity of the samples were assessed with micro-computed tomography and indicated great results for porosity improvement, achieved with 6.0 wt. % TiN content in the composite. TiN has proven to be an effective filler for HDPE polymers, enabling the manufacture of parts with improved mechanical properties and quality.

2.
Heliyon ; 10(11): e32094, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882316

ABSTRACT

Acrylonitrile butadiene styrene (ABS) composites were prepared in filament form compatible with the material extrusion (MEX) 3D printing method, using biochar as a filler at various loadings of up to 10.0 wt %. Samples were fabricated to experimentally investigate their mechanical performance. The ABS/biochar composites were characterized using thermogravimetric analysis, differential scanning calorimetry, Raman spectroscopy, and rheological tests. The electrical properties of the composites were investigated using broadband dielectric spectroscopy. Scanning electron microscopy was utilized to analyze the morphological features of the fabricated specimens by examining their side and fracture surfaces. The results indicate that the composite with 4.0 wt % biochar content compared to pure ABS showed the highest mechanical response between the prepared composites (24.9 % and 21 % higher than the pure ABS tensile and flexural strength respectively). The composites retained their insulating behavior. These findings contribute to expanding the utilization of the material extrusion (MEX) 3D printing method while also unlocking prospects for potential applications in microelectronics, apart from mechanical reinforcement.

3.
Polymers (Basel) ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794518

ABSTRACT

Glass was introduced as an additive to filaments used for the manufacturing of composite materials, employed by Additive Manufacturing applications. Glass accounts for a large waste electric and electronic equipment (WEEE) percentage, and its recovery and recycling can lead to the production of sustainable composite materials. In this work, poly(lactic acid) (PLA)/commercially available silicon oxide composite filaments were manufactured and their structural, thermal, rheological, and mechanical properties were assessed. Scanning Electron Microscopy confirmed the 1:2 ratio of silicon: oxygen, along with the relatively low adhesion between the filler and the matrix. Differential Scanning Calorimetry presented steady glass transition and melting temperatures of composites, whereas a crystallization temperature of 10% wt. and a crystallinity of 15% wt. composite slightly increased. Rheological analysis showcased that the viscosity of the composite filaments decreased compared to PLA (10-100 compared to 300-400 Pa·s), with a more shear-thinning behavior. Dynamic mechanical analysis exhibited increased elastic, flexural moduli, and flexural strength of composites (up to 16, 23, and 11%, respectively), whereas tensile strength and elongation decreased. The affordability of raw materials (with the future introduction of recycled ones) and the minimal processing steps can lead to the potential scaling up of the study.

4.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727355

ABSTRACT

In this study, poly (ethylene terephthalate) (PETG) was combined with Antimony-doped Tin Oxide (ATO) to create five different composites (2.0-10.0 wt.% ATO). The PETG/ATO filaments were extruded and supplied to a material extrusion (MEX) 3D printer to fabricate the specimens following international standards. Various tests were conducted on thermal, rheological, mechanical, and morphological properties. The mechanical performance of the prepared nanocomposites was evaluated using flexural, tensile, microhardness, and Charpy impact tests. The dielectric and electrical properties of the prepared composites were evaluated over a broad frequency range. The dimensional accuracy and porosity of the 3D printed structure were assessed using micro-computed tomography. Other investigations include scanning electron microscopy and energy-dispersive X-ray spectroscopy, which were performed to investigate the structures and morphologies of the samples. The PETG/6.0 wt.% ATO composite presented the highest mechanical performance (21% increase over the pure polymer in tensile strength). The results show the potential of such nanocomposites when enhanced mechanical performance is required in MEX 3D printing applications, in which PETG is the most commonly used polymer.

5.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674964

ABSTRACT

Polyethylene terephthalate glycol (PETG) and silicon nitride (Si3N4) were combined to create five composite materials with Si3N4 loadings ranging from 2.0 wt.% to 10.0 wt.%. The goal was to improve the mechanical properties of PETG in material extrusion (MEX) additive manufacturing (AM) and assess the effectiveness of Si3N4 as a reinforcing agent for this particular polymer. The process began with the production of filaments, which were subsequently fed into a 3D printer to create various specimens. The specimens were manufactured according to international standards to ensure their suitability for various tests. The thermal, rheological, mechanical, electrical, and morphological properties of the prepared samples were evaluated. The mechanical performance investigations performed included tensile, flexural, Charpy impact, and microhardness tests. Scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping were performed to investigate the structures and morphologies of the samples, respectively. Among all the composites tested, the PETG/6.0 wt.% Si3N4 showed the greatest improvement in mechanical properties (with a 24.5% increase in tensile strength compared to unfilled PETG polymer), indicating its potential for use in MEX 3D printing when enhanced mechanical performance is required from the PETG polymer.

6.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38457263

ABSTRACT

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Subject(s)
Alloys , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Metal Nanoparticles , Silver , Surface Properties , Thiazoles , Titanium , Humans , Fibroblasts/drug effects , Titanium/toxicity , Titanium/chemistry , Gingiva/cytology , Gingiva/drug effects , Silver/chemistry , Silver/toxicity , Cell Proliferation/drug effects , Metal Nanoparticles/toxicity , Cell Survival/drug effects , Cells, Cultured , Alloys/toxicity , Materials Testing , Dental Alloys/chemistry , Dental Alloys/toxicity , Microscopy, Electron, Scanning , Coloring Agents , Biocompatible Materials/chemistry , Tetrazolium Salts
7.
Polymers (Basel) ; 15(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139968

ABSTRACT

High-density polyethylene polymer (HDPE) and carbon black (CB) were utilized to create HDPE/CB composites with different filler concentrations (0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 16.0, 20.0, and 24.0 wt.%). The composites were extruded into filaments, which were then utilized to fabricate 3D-printed specimens with the material extrusion (MEX) method, suitable for a variety of standard mechanical tests. The electrical conductivity was investigated. Furthermore, thermogravimetric analysis and differential scanning calorimetry were carried out for all the HDPE/CB composites and pure HDPE. Scanning electron microscopy in different magnifications was performed on the specimens' fracture and side surfaces to investigate the morphological characteristics. Rheological tests and Raman spectroscopy were also performed. Eleven different tests in total were performed to fully characterize the composites and reveal connections between their various properties. HDPE/CB 20.0 wt.% showed the greatest reinforcement results in relation to pure HDPE. Such composites are novel in the MEX 3D printing method. The addition of the CB filler greatly enhanced the performance of the popular HDPE polymer, expanding its applications.

8.
Polymers (Basel) ; 15(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37835932

ABSTRACT

The goal of this paper is to investigate tungsten carbide (WC) as a reinforcement in the popular material extrusion (MEX) additive manufacturing (AM) procedure. The impressive characteristics of WC demonstrate its potential as a valuable additive for commonly used polymeric matrices in MEX 3D printing, offering reinforcement and stabilization properties. The mechanical properties of hybrid polymer/ceramic nanocomposites made up of various filler loadings (0-10 wt. %) of medical-grade polylactic acid (PLA) and WC were studied. The mechanical characteristics, structure, and thermomechanical properties of the resulting compounds were fully characterized following the respective standards. The fracture mechanisms were revealed with Scanning Electron Microscopy. Overall, a laborious effort was implemented with fifteen different tests to fully characterize the nanocomposites prepared. In comparison to the raw PLA material, the tensile strength of the 4.0 wt. % WC PLA/WC nanocomposite was improved by 42.5% and the flexural strength by 41.9%. In the microhardness test, a 120.4% improvement was achieved, justifying the properties of WC ceramic. According to these findings, PLA nanocomposites reach high-performance polymer specifications, expanding their potential use, especially in wear-related applications.

9.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242004

ABSTRACT

The current research aimed to examine the thermomechanical properties of new nanocomposites in additive manufacturing (AM). Material extrusion (MEX) 3D printing was utilized to evolve acrylonitrile butadiene styrene (ABS) nanocomposites with silicon nitride nano-inclusions. Regarding the mechanical and thermal response, the fabricated 3D-printed samples were subjected to a course of standard tests, in view to evaluate the influence of the Si3N4 nanofiller content in the polymer matrix. The morphology and fractography of the fabricated filaments and samples were examined using scanning electron microscopy and atomic force microscopy. Moreover, Raman and energy dispersive spectroscopy tests were accomplished to evaluate the composition of the matrix polymer and nanomaterials. Silicon nitride nanoparticles were proved to induce a significant mechanical reinforcement in comparison with the polymer matrix without any additives or fillers. The optimal mechanical response was depicted to the grade ABS/Si3N4 4 wt. %. An impressive increase in flexural strength (30.3%) and flexural toughness (47.2%) was found. The results validate that these novel ABS nanocomposites with improved mechanical properties can be promising materials.

10.
J Mech Behav Biomed Mater ; 134: 105408, 2022 10.
Article in English | MEDLINE | ID: mdl-35981423

ABSTRACT

The effect of Cellulose NanoFiber (CNF) addition to a medical-grade resin in Stereolithography (SLA) Additive Manufacturing (AM) technology is reported, aiming to elaborate an easily processable, highly stiff bio-compound. CNFs were shear stir blended at various weight ratios with liquid resin. The fabricated nanocomposite materials were introduced in an SLA 3D printer for specimens manufacturing. The mechanical performance was studied according to international standards. Charpy Toughness and Vickers microhardness were calculated for all tested materials. A microscopic and surface analysis was conducted on fractured tensile specimens by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), respectively. The thermal and thermomechanical properties were investigated by Thermogravimetric Analysis (TGA), Differential Calorimetry (DSC), and Dynamic Mechanical Analysis (DMA). Significant reinforcement of the medical-grade nanocomposites is reported, with the highest values calculated to be at 1.0 wt% concentration (more than 100% at the tensile strength), while brittleness and rigidity were increased.


Subject(s)
Nanocomposites , Nanofibers , Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Printing, Three-Dimensional , Tensile Strength
11.
Langmuir ; 38(32): 9810-9821, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35786927

ABSTRACT

This study aims to provide insights into biofilm resistance associated with their structural properties acquired during formation and development. On this account, the wetting and imbibition behavior of dehydrated Pseudomonas fluorescens biofilms grown on stainless steel electropolished substrates is thoroughly examined at different biofilm ages. A polar liquid (water) and a non-polar liquid (diiodomethane) are employed as wetting agents in the form of sessile droplets. A mathematical model is applied to appraise the wetting and imbibition performance of biofilms incorporating the evaporation of sessile droplets. The present results show that the examined biofilms are hydrophilic. The progressive growth of biofilms leads to a gradual increase of substrate surface coverage─up to full coverage─accompanied by a gradual decrease of biofilm surface roughness. It is noteworthy that just after 24 h of biofilm growth, the surface roughness increases about 6.7 times the roughness of the clean stainless steel surface. It is further found that the imbibition of liquid in the biofilm matrix is restricted only to the biofilm region under the sessile droplet. The lack of further capillary imbibition into the biofilm structure, beyond the droplet deposition region, implies that the biofilm matrix is not in the form of an extended network of interconnected micro/nanopores. All in all, the present results indicate a resilient biofilm structure to biocide penetration despite its hydrophilic nature.


Subject(s)
Disinfectants , Pseudomonas fluorescens , Biofilms , Stainless Steel/chemistry , Wettability
12.
Polymers (Basel) ; 14(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35567072

ABSTRACT

This study introduced binary nanoparticle (NP) inclusions into a biomedical-grade photosensitive resin (Biomed Clear-BC). Multi-functional, three-dimensional (3D) printed objects were manufactured via the vat photopolymerization additive manufacturing (AM) technique. Cellulose nanofibers (CNFs) as one dimensional (1D) nanomaterial have been utilized for the mechanical reinforcement of the resin, while three different spherical NPs, namely copper NPs (nCu), copper oxide NPs (nCuO), and a commercial antimicrobial powder (nAP), endowed the antimicrobial character. The nanoparticle loading was kept constant at 1.0 wt.% to elucidate any synergistic effects as a function of the filler loading. Raman, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) revealed the chemical/spectroscopic and thermal properties of the different manufactured samples. Scanning electron microscopy and Atomic Force Microscopy (AFM) revealed the morphology of the samples. Mechanical properties revealed the reinforcement mechanisms, namely that BC/CNF (1.0 wt.%) exhibited a 102% and 154% enhancement in strength and modulus, respectively, while BC/CNF(1.0 wt.%)/AP(1.0 wt.%) exhibited a 95% and 101% enhancement, as well as an antibacterial property, which was studied using a screening agar well diffusion method. This study opens the route towards novel, multi-functional materials for vat photopolymerization 3D printing biomedical applications, where mechanical reinforcement and antibacterial performance are typically required in the operational environment.

13.
Nanomaterials (Basel) ; 12(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35159879

ABSTRACT

In the current study, nanocomposites of medical-grade polyamide 12 (PA12) with incorporated copper (I) oxide (cuprous oxide-Cu2O) were prepared and fully characterized for their mechanical, thermal, and antibacterial properties. The investigation was performed on specimens manufactured by fused filament fabrication (FFF) and aimed to produce multi-purpose geometrically complex nanocomposite materials that could be employed in medical, food, and other sectors. Tensile, flexural, impact and Vickers microhardness measurements were conducted on the 3D-printed specimens. The fractographic inspection was conducted utilizing scanning electron microscopy (SEM), to determine the fracture mechanism and qualitatively evaluate the process. Moreover, the thermal properties were determined by thermogravimetric analysis (D/TGA). Finally, their antibacterial performance was assessed through a screening method of well agar diffusion. The results demonstrate that the overall optimum performance was achieved for the nanocomposites with 2.0 wt.% loading, while 0.5 wt.% to 4.0 wt.% loading was concluded to have discrete improvements of either the mechanical, the thermal, or the antibacterial performance.

14.
Biomed Res Int ; 2021: 5013065, 2021.
Article in English | MEDLINE | ID: mdl-34938808

ABSTRACT

Osteosarcoma is considered to be a highly malignant tumor affecting primarily long bones. It metastasizes widely, primarily to the lungs, resulting in poor survival rates of between 19 and 30%. Standard treatment consists of surgical removal of the affected site, with neoadjuvant and adjuvant chemotherapy commonly used, with the usual side effects and complications. There is a need for new treatments in this area, and silver nanoparticles (AgNPs) are one potential avenue for exploration. AgNPs have been found to possess antitumor and cytotoxic activity in vitro, by demonstrating decreased viability of cancer cells through cell cycle arrest and subsequent apoptosis. Integral to these pathways is tumor protein p53, a tumor suppressor which plays a critical role in maintaining genome stability by regulating cell division, after DNA damage. The purpose of this study was to determine if p53 mediates any difference in the response of the osteosarcoma cells in vitro when different sizes and concentrations of AgNPs are administered. Two cell lines were studied: p53-expressing HOS cells and p53-deficient Saos-2 cells. The results of this study suggest that the presence of protein p53 significantly affects the efficacy of AgNPs on osteosarcoma cells.


Subject(s)
Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Metal Nanoparticles/administration & dosage , Osteosarcoma/drug therapy , Silver/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cytotoxins/pharmacology , DNA Damage/drug effects , Humans , Osteosarcoma/metabolism , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
15.
Materials (Basel) ; 14(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500886

ABSTRACT

Heat-treated and shot-peened lightweight steels with demanding requirements for durability are applied in high-performance automotive leaf springs. Due to their heat-treatment they exhibit degraded properties in the surface-near area compared to the core. This area, which may extend until 300 µm from the surface to the core, experiences the highest bending stresses at operation. The microstructure in the surface and sub-surface layers determines the mechanical performance as well as the wear resistance. The present study refers to the material properties of a stress shot-peened 51CrV4 steel at various depths from the surface. The effect of the manufacturing process has been captured both by Vickers micro-hardness measurements and nanoindentation. The latter combined with a Fine Element Method (FEM)-based algorithm enables the determination of variations in the material's stress-strain curves over the affected layers, which translate to internal stress changes. The nanoindentation technique has been applied here successfully for the first time ever on leaf springs. The combination of microstructural analysis, microhardness and nanoindentation captures the changes of the treated material, offering insights on the material characteristics, and yielding accurate elastoplastic material properties for local, layered-based analysis of the components' mechanical performance at operational loading scenarios, i.e., in the framework of stress shot-peening simulation models.

16.
Nanotechnology ; 32(50)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-33735843

ABSTRACT

In recent years, a wide range of electronic materials with a great diversity in their chemical and physical properties has been patterned by printing techniques on a variety of substrates. Nanotechnology-based materials appear to be the most promising thereof, increasing the resolution of the printed raster and enhancing the electrical properties of the final patterns. Conductive nanoparticle inks are the main building block of all printed electronic devices and circuit boards, forming their fundamental structure and integrated low-resistance circuit interconnects, antennae, contact electrodes within transistors etc. A plethora of both conventional and novel printing techniques have been employed with nanoparticle-based inks for the fabrication of conductive patterns, dictating different limitations for the properties of the printed inks. Although several articles have reviewed printing techniques of nanomaterials, a comprehensive review on physicochemical properties that need to be considered in order to develop nanoparticle-based conductive inks, sufficiently compatible with each printing technique, is missing. This review firstly summarizes a wide range of printing techniques that are of high potential for printing electronics and then narrows them down to those applied with conductive nanoparticle inks. Next, it focuses on the typical properties of nanoparticle-based conductive inks (chemical composition, particle size and shape, solids loading, ink viscosity and surface tension) and suggests parameters that need to be taken into account when preparing conductive nanotechnology-based inks, corresponding the requirements of each printing technique. General principles that determine the electrical conductivity of the printed patterns are outlined. Lastly, future prospects on the development of novel printable materials are laid out.

17.
J Prosthodont ; 29(2): 151-160, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31663223

ABSTRACT

PURPOSE: To evaluate the influence of different preparation designs and depths on the stress field developed in maxillary central incisors restored with veneers made with different ceramic materials using finite element analysis (FEA). MATERIALS AND METHODS: A linear static three-dimensional finite element analysis model was used with the aid of reverse engineering to develop digital models of maxillary central incisors restored with ceramic veneers, according to two different preparation depths (thin vs deep) and two different preparation designs (feather edge vs butt joint). Three ceramic systems were tested: (i) feldspathic porcelain, (ii) heat pressed glass ceramic IPS Empress 2 (Ivoclar Vivadent AG), and (iii) heat pressed glass ceramic IPS e.max-Press (Ivoclar Vivadent AG). Each model was subjected to a compressive force of 200N applied to the palatal surface 2 mm below the incisal edge. The longitudinal axis of the restored tooth formed an angle of 130o with the direction of the force. The biomechanical behavior of the different models was examined according to the von Mises stress criterion. Statistical analysis was performed using nonparametric confidence interval estimation using bootstrapping. RESULTS: The maximum observed stress values were calculated and found to be similar between prepared and intact teeth. The cervical margin of the veneers displayed the highest von Mises stress values. Irrespectively of the depth and preparation design, the biggest von Mises stress values were observed at the veneer structures with the following order: (i) IPS Empress 2, (ii) IPS e.max-Press, (iii) feldspathic (p = 0.001). Preparation depth resulted in statistically significant differences (p = 0.001) in the stress distribution in the majority of tested structures. As the preparation depth was increased, the stresses within the veneer structure and the tooth structures were decreased. No statistically significant differences were detected in the stresses among the different restored models, when the preparation design was considered. CONCLUSIONS: This FEA study suggests that ceramic veneers could restore the biomechanical behavior of prepared central incisors and made it similar of that of an intact tooth. Regardless of the preparation depth and design and the ceramic system used, the cervical margin of ceramic veneers presents the highest von Mises stress values. When feldspathic porcelain was compared with lithium disilicate (IPS e.max Press), the latter displayed the lowest transfer of stresses to dental tissues. An increase in preparation depth resulted in a statistically significant stress decrease in both the veneer and the tooth.


Subject(s)
Dental Veneers , Incisor , Ceramics , Dental Porcelain , Dental Stress Analysis , Finite Element Analysis
18.
Dent Mater ; 35(9): e220-e233, 2019 09.
Article in English | MEDLINE | ID: mdl-31301809

ABSTRACT

OBJECTIVES: This study aimed to develop silver nanoparticle (AgNP)-doped Ti6Al4V alloy surfaces and investigate their antibacterial properties against representative periopathogens and potential cytotoxicity on osteoblastic cells. METHODS: AgNPs of different size distributions (5 and 30nm) were incorporated onto the Ti6Al4V surfaces by electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations (100, 200 and 300ppm). The time-course silver release from the specimen surfaces to cell culture media was assessed by Atomic Absorption Spectroscopy (AAS). Cell attachment, viability and proliferation were investigated by SEM, live/dead staining MTT and BrdU assays. The antibacterial effects were assessed against P. gingivalis and P. intermedia by serial dilution spotting assays. RESULTS: A time- and concentration-dependent silver release from the experimental surfaces was observed. Overall, cell viability and attachment on the AgNP-doped surfaces, suggested adequate cytocompatibility at all concentrations. A transient cytotoxic effect was detected at 24h for the 5nm-sized groups that fully recovered at later time-points, while no cytotoxicity was observed for the 30nm-sized groups. A statistically significant, concentration-dependent decrease in cell proliferation rates was induced at 48h in all AgNP groups, followed by recovery at 72h in the groups coated with 5nm-sized AgNPs. A statistically significant, concentration-dependent antibacterial effect up to 30% was confirmed against both periopathogens. SIGNIFICANCE: This study sheds light to the optimal size-related concentrations of AgNP-doped Ti6Al4V surfaces to achieve antibacterial effects, without subsequent cytotoxicity. These results significantly contribute to the development of antibacterial surfaces for application in oral implantology.


Subject(s)
Metal Nanoparticles , Titanium , Alloys , Anti-Bacterial Agents , Silver
19.
Nanomaterials (Basel) ; 7(7)2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28698511

ABSTRACT

Silver nanoparticles (AgNPs) have been demonstrated to restrain bacterial growth, while maintaining minimal risk in development of bacterial resistance and human cell toxicity that conventional silver compounds exhibit. Several physical and chemical methods have been reported to synthesize AgNPs. However, these methods are expensive and involve heavy chemical reduction agents. An alternative approach to produce AgNPs in a cost-effective and environmentally friendly way employs a biological pathway using various plant extracts to reduce metal ions. The size control issue, and the stability of nanoparticles, remain some of the latest challenges in such methods. In this study, we used two different concentrations of fresh leaf extract of the plant Arbutus unedo (LEA) as a reducing and stabilizing agent to produce two size variations of AgNPs. UV-Vis spectroscopy, Dynamic Light Scattering, Transmission Electron Microscopy, and zeta potential were applied for the characterization of AgNPs. Both AgNP variations were evaluated for their antibacterial efficacy against the gram-negative species Escherichia coli and Pseudomonas aeruginosa, as well as the gram-positive species Bacillus subtilis and Staphylococcus epidermidis. Although significant differences have been achieved in the nanoparticles' size by varying the plant extract concentration during synthesis, the antibacterial effect was almost the same.

20.
Front Physiol ; 8: 273, 2017.
Article in English | MEDLINE | ID: mdl-28536534

ABSTRACT

Mice are arguably the dominant model organisms for studies investigating the effect of genetic traits on the pathways to mammalian skull and teeth development, thus being integral in exploring craniofacial and dental evolution. The aim of this study is to analyse the functional significance of masticatory loads on the mouse mandible and identify critical stress accumulations that could trigger phenotypic and/or growth alterations in mandible-related structures. To achieve this, a 3D model of mouse skulls was reconstructed based on Micro Computed Tomography measurements. Upon segmenting the main hard tissue components of the mandible such as incisors, molars and alveolar bone, boundary conditions were assigned on the basis of the masticatory muscle architecture. The model was subjected to four loading scenarios simulating different feeding ecologies according to the hard or soft type of food and chewing or gnawing biting movement. Chewing and gnawing resulted in varying loading patterns, with biting type exerting a dominant effect on the stress variations experienced by the mandible and loading intensity correlating linearly to the stress increase. The simulation provided refined insight on the mechanobiology of the mouse mandible, indicating that food consistency could influence micro evolutionary divergence patterns in mandible shape of rodents.

SELECTION OF CITATIONS
SEARCH DETAIL