Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202402415, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925568

ABSTRACT

Biradicals are important intermediates in the formation and breaking of a chemical bond. Their use as molecular switches is of particular interest. Much less is known about tetraradicals, which can, for example, consist of two biradical(oid) units. Here we report the synthesis of the first persistent phosphorus-centred tetraradical bound to a transition metal fragment. Starting from a zirconocene complex, rac-(ebthi)ZrCl2 (rac-(ebthi) = 1,2-ethylene-1,10-bis(h5-tetrahydroin-denyl), two cyclo-1,3-diphospha-pentane-1,3-diyls were successfully introduced, which finally led to the isolation of a deep green zircon-cene-bridged bis(biradicaloid) complex (5) that can act as a double molecular switch. Under the influence of light (570 nm), this tetra-radical forms a transannular bond in each of the two five-membered biradical units, leading to the formation of housane 5h. Upon irradiation at 415 nm, the reverse reaction is observed, fully reco-vering tetraradical 5. Through single-crystal-to-single-crystal trans-formation, both stable species of the molecular switch could be structurally characterised using SCXRD. The switching under the influence of light and the activation of molecular hydrogen were analysed in solution using NMR and UV spectroscopy. It was found that the addition of one or two equivalents of molecular hydrogen can be switched on and off by light.

2.
J Am Chem Soc ; 145(26): 14484-14497, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37315222

ABSTRACT

Biradicals are important intermediates in the process of bond formation and breaking. While main-group-element-centered biradicals have been thoroughly studied, much less is known about tetraradicals, as their very low stability has hampered their isolation and use in small-molecule activation. Herein, we describe the search for persistent phosphorus-centered tetraradicals. Starting from an s-hydrindacenyl skeleton, we investigated the introduction of four phosphorus-based radical sites linked by an N-R unit and bridged by a benzene moiety. By varying the size of the substituent R, we finally succeeded in isolating a persistent P-centered singlet tetraradical, 2,6-diaza-1,3,5,7-tetraphospha-s-hydrindacene-1,3,5,7-tetrayl (1), in good yields. Furthermore, it was demonstrated that tetraradical 1 can be utilized for the activation of small molecules such as molecular hydrogen or alkynes. In addition to the synthesis of P-centered tetraradicals, the comparison with other known tetraradicals as well as biradicals is described on the basis of quantum mechanical calculations with respect to its multireference character, coupling of radical electrons, and aromaticity. The strong coupling of radical electrons enables selective discrimination between the first and the second activations of small molecules, which is shown by the example of H2 addition. The mechanism of hydrogen addition is investigated with parahydrogen-induced hyperpolarization NMR studies and DFT calculations.

3.
Chempluschem ; 88(5): e202300072, 2023 May.
Article in English | MEDLINE | ID: mdl-37010077

ABSTRACT

The chlorination of 1,2-diphosphinobenzene with PCl5 to 1,2-bis(dichlorophosphino)benzene was performed with high yields (93 %) despite the high number of P-H functions. The method was further applied to other phosphanes, enabling the first synthesis and complete characterization of 1,2,4-tris(dichlorophosphino)benzene (89 % yield) and 1,2,4,5-tetrakis(dichlorophosphino)benzene (91 % yield), valuable precursors for example for binuclear complexes, coordination polymers, organic wires, or metal-organic frameworks. The application of the chlorophosphanes in base induced ring closure reactions with primary amines is demonstrated.

4.
Inorg Chem ; 62(17): 6768-6778, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37068163

ABSTRACT

In solution, the Pacman chlorophosphane (2Cl) shows fast exchange of the endo/exo-orientation of the two P-Cl bonds in the molecule featuring cooperativity. Experimental and quantum mechanical investigations of the inversion on the phosphorus(III) centers reveal a crucial role of chloride ions in the dynamic process. To confirm the results, the homologous Pacman halogen-phosphanes 2X were prepared by halogen exchange reactions (X = F, Br, and I). Besides accelerated dynamic behavior for the heavier analogues, significant differences in the molecular structure are caused by the halogen exchange reactions, including the formation of an endo-endo substituted Pacman fluorophosphane as well as dicationic species by phosphorus halogen bond dissociation. The latter process can be regarded as redox isomerism since two PIII atoms in 2X become PV centers in the dications.

5.
Chemistry ; 29(33): e202300764, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-36947665

ABSTRACT

Differently substituted phenyl isonitriles (with C-H bonds in ortho-position) and naphthyl isonitriles were reacted with the cyclic biradical [⋅P(µ-N-Ter)2 P⋅] (1). Insertion of the isonitrile formed a cyclic five-membered biradical [⋅P(NTer)2 C(R)P⋅] (2R, R=phenyl, naphthyl) in the first step, followed by C-H activation at the aryl substituent, resulting in novel azaphospholes (5R), which could be isolated and fully characterized. The formation of the azaphospholes can be prevented by the addition of a second equivalent of isonitrile, which causes the blocking of the radical centers in 2R by adduct formation (3R). Quantum mechanical calculations showed that a significant increase in the aromaticity of the benzo- and naphtho-azaphospholes is one of the driving forces for the activation process leading to the formation of thermodynamically favored azaphospholes. Targeted activation of C-H bonds using biradical systems represents a new synthetic approach to generate benzo- and naphtho-azaphospholes.

6.
Chemistry ; 28(67): e202201905, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35989474

ABSTRACT

Electrophilic aromatic substitution (EAS) can provide a straightforward approach to the efficient synthesis of functionalized complex aromatic molecules. In general, Lewis acids serve as a beneficial stimulus for the formation of a Wheland complex, the intermediate in the classical SE Ar mechanism of EAS, which is responsible for H/E (E=electrophile) substitution under formal H+ elimination. Herein, we report an unusual variant of EAS, in which a complex molecule such as the tricyanomethane, HC(CN)3 , is activated with a strong Lewis acid (B(C6 F5 )3 ) to the point where it can finally be used in an EAS. However, the Lewis acid here causes the isomerization of the tricyanomethane to the ketenimine, HN=C=C(CN)2 , which in turn directly attacks the aromatic species in the EAS, with simultaneous proton migration of the aromatic proton to the imino group, so that no elimination occurs that is otherwise observed in the SE Ar mechanism. By this method, it is possible to build up amino-malononitrile-substituted aromatic compounds in one step.

7.
Magn Reson Chem ; 60(8): 845-856, 2022 08.
Article in English | MEDLINE | ID: mdl-35373394

ABSTRACT

The isomerism of dimethyl 2,2'-(7,8-dichloro-1H-benzo[b][1,4]diazepine-2,4-(3H,5H)diylidene)diacetate (1a) and dimethyl 2,2'-(7,8-dichloro-3-methyl-1H-benzo[b][1,4]diazepine-2,4-(3H,5H)diylidene)diacetate (1b) was investigated by 1 H, 13 C and 15 N nuclear magnetic resonance (NMR) spectroscopy. In CDCl3 solution, inversion of the diazepine ring was observed, whereas in (D6 )DMSO and (D7 )DMF solution, besides the ring inversion, a partial cleavage of one chelate ring appeared connected with (E/Z) isomerization about one of the exocyclic C=C bonds. Gibbs free energies (ΔG) and free activation energies (ΔG≠ ) were calculated based on B3PW91-SCRF/ZVP DFT computations. Agreement between NMR data and density functional theory (DFT) computations was found.


Subject(s)
Benzodiazepines , Models, Theoretical , Isomerism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods
8.
Chemistry ; 28(3): e202103983, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34761445

ABSTRACT

Formal coordination of phosphorus(III) by a calix[4]pyrrole Schiff base ligand was achieved through the reaction of this ligand with PCl3 under basic conditions. The reaction product adopts a Pacman conformation with two P-Cl moieties, one in exo and one in endo position. It represents the first non-metal compound of calix[4]pyrrole Schiff base ligands and of Pacman ligands in general. The spatial neighborhood of the two phosphorus atoms enables cooperative reactions. As a first example, the chloride abstraction with AgOTf is presented, yielding a macrocyclic dication with two embedded phosphorus(III) monocations, which both undergo a cooperative, internal activation reaction with an adjacent C=N double bond. This intramolecular redox process affords two pentacoordinated phosphorus(V) centers within the Pacman dication. All reaction products were fully characterized and all results are supported by computations.

9.
Org Lett ; 23(20): 7834-7838, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34596417

ABSTRACT

The tricyclic azepino[1,2-a]indole acetates 7, readily accessible by visible-light-driven catalytic photooxygenation of cyclohepta[b]indoles 1, are convenient precursors to novel and uncommon cyclic C,N-diacyliminium ions 3. We report here the first Lewis acid-catalyzed C-C bond forming reactions of these species with TMSCN and silyl enol ethers as nucleophiles and utilizing TIPSOTf as well as Sc(OTf)3 as catalysts. Employing Sc(OTf)3/pybox complexes as a chiral catalyst system, regio- and enantioselective asymmetric alkylations with silyl enol ethers were achieved.

10.
Protoplasma ; 258(6): 1187-1199, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33550447

ABSTRACT

Single-celled green algae within the Trebouxiophyceae (Chlorophyta) are typical components of terrestrial habitats, which often exhibit harsh environmental conditions for these microorganisms. This study provides a detailed overview of the ecophysiological, biochemical, and ultrastructural traits of an alga living on tree bark. The alga was isolated from a cypress tree in the Botanical Garden of Innsbruck (Austria) and identified by morphology and molecular phylogeny as Diplosphaera chodatii. Transmission electron microscopy after high-pressure freezing (HPF) showed an excellent preservation of the ultrastructure. The cell wall was bilayered with a smooth inner layer and an outer layer of polysaccharides with a fuzzy hair-like appearance that could possibly act as cell-cell adhesion mechanism and hence as a structural precursor supporting biofilm formation together with the mucilage observed occasionally. The photosynthetic-irradiance curves of D. chodatii indicated low light requirements without photoinhibition at high photon flux densities (1580 µmol photons m-2 s-1) supported by growth rate measurements. D. chodatii showed a high desiccation tolerance, as 85% of its initial value was recovered after controlled desiccation at a relative humidity of ~10%. The alga contained the low molecular weight carbohydrates sucrose and sorbitol, which probably act as protective compounds against desiccation. In addition, a new but chemically not elucidated mycosporine-like amino acid was detected with a molecular mass of 332 g mol-1 and an absorption maximum of 324 nm. The presented data provide various traits which contribute to a better understanding of the adaptive mechanisms of D. chodatii to terrestrial habitats.


Subject(s)
Chlorophyta , Acclimatization , Adaptation, Physiological , Ecosystem , Photosynthesis
11.
ChemistryOpen ; 10(2): 62-71, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33565728

ABSTRACT

Within the second funding period of the SPP 1708 "Material Synthesis near Room Temperature",which started in 2017, we were able to synthesize novel anionic species utilizing Ionic Liquids (ILs) both, as reaction media and reactant. ILs, bearing the decomposable and non-innocent methyl carbonate anion [CO3 Me]- , served as starting material and enabled facile access to pseudohalide salts by reaction with Me3 Si-X (X=CN, N3 , OCN, SCN). Starting with the synthesized Room temperature Ionic Liquid (RT-IL) [nBu3 MeN][B(OMe)3 (CN)], we were able to crystallize the double salt [nBu3 MeN]2 [B(OMe)3 (CN)](CN). Furthermore, we studied the reaction of [WCC]SCN and [WCC]CN (WCC=weakly coordinating cation) with their corresponding protic acids HX (X=SCN, CN), which resulted in formation of [H(NCS)2 ]- and the temperature labile solvate anions [CN(HCN)n ]- (n=2, 3). In addition, the highly labile anionic HCN solvates were obtained from [PPN]X ([PPN]=µ-nitridobis(triphenylphosphonium), X=N3 , OCN, SCN and OCP) and HCN. Crystals of [PPN][X(HCN)3 ] (X=N3 , OCN) and [PPN][SCN(HCN)2 ] were obtained when the crystallization was carried out at low temperatures. Interestingly, reaction of [PPN]OCP with HCN was noticed, which led to the formation of [P(CN)2 ]- , crystallizing as HCN disolvate [PPN][P(CN⋅HCN)2 ]. Furthermore, we were able to isolate the novel cyanido(halido) silicate dianions of the type [SiCl0.78 (CN)5.22 ]2- and [SiF(CN)5 ]2- and the hexa-substituted [Si(CN)6 ]2- by temperature controlled halide/cyanide exchange reactions. By facile neutralization reactions with the non-innocent cation of [Et3 HN]2 [Si(CN)6 ] with MOH (M=Li, K), Li2 [Si(CN)6 ] ⋅ 2 H2 O and K2 [Si(CN)6 ] were obtained, which form three dimensional coordination polymers. From salt metathesis processes of M2 [Si(CN)6 ] with different imidazolium bromides, we were able to isolate new imidazolium salts and the ionic liquid [BMIm]2 [Si(CN)6 ]. When reacting [Mes(nBu)Im]2 [Si(CN)6 ] with an excess of the strong Lewis acid B(C6 F5 )3 , the voluminous adduct anion {Si[CN⋅B(C6 F5 )3 ]6 }2- was obtained.

12.
Angew Chem Int Ed Engl ; 60(3): 1507-1512, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33038288

ABSTRACT

Conversion of 1,2-bis(dichlorophosphino)benzene with sterically demanding primary amines led to the formation of 1,3-dichloro-2-aza-1,3-diphosphaindanes of the type C6 H4 (µ-PCl)2 N-R. Reduction yielded the corresponding 2-aza-1,3-diphosphaindane-1,3-diyls (1), which can be described as phosphorus-centered singlet biradical(oid)s. Their stability depends on the size of the substituent R: While derivatives with R=Dmp (2,6-dimethylphenyl) or Ter (2,6-dimesitylphenyl) underwent oligomerization, the derivative with very bulky R=tBu Bhp (2,6-bis(benzhydryl)-4-tert-butylphenyl) was stable with respect to oligomerization in its monomeric form. Oligomerization involved activation of the fused benzene ring by a second equivalent of the monomeric biradical and can be regarded as formal [2+2] (poly)addition reaction. Calculations indicate that the biradical character in 1 is comparable with literature-known P-centered biradicals. Ring-current calculations show aromaticity within the entire ring system of 1.

13.
Dalton Trans ; 49(40): 13986-13992, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32869789

ABSTRACT

The photo-isomerization of an isolable five-membered singlet biradical based on C, N, and P ([TerNP]2CNDmp, 2a) selectively afforded a closed-shell housane-type isomer (3a) by forming a transannular P-P bond. In the dark, the housane-type species re-isomerized to the biradical, resulting in a fully reversible overall process. In the present study, the influence of tBuNC on the thermal reverse reaction was investigated: the isonitrile acted as a catalyst, thus allowing control over the thermal reaction rate. Moreover, tBuNC also reacted with the biradical to form an adduct species ([TerNP]2CNDmp·CNtBu, 4a), which can be regarded as the resting state of the system. The reactive species 2a and 3a could be re-generated in situ by irradiation with red light. The results of this study extend our understanding of this new class of molecular switches.

14.
J Org Chem ; 85(22): 14435-14445, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32393023

ABSTRACT

The reaction of the singlet biradical [P(µ-NHyp)]2 (Hyp = hypersilyl, (Me3Si)3Si) with different isonitriles afforded a series of five-membered N2P2C heterocycles. Depending on the steric bulk of the substituent at the isonitrile, migration of a Hyp group was observed, resulting in two structurally similar but electronically very different isomers. As evidenced by comprehensive spectroscopic and theoretical studies, the heterocyclopentadiene isomer may be regarded as a rather unreactive closed-shell singlet species with one localized N═P and one C═P double bond, whereas the heterocyclopentanediyl isomer represents an open-shell singlet biradical with interesting photochemical properties, such as photoisomerization under irradiation with red light to a [2.1.0]-housane-type species.

15.
Chemistry ; 26(7): 1640-1652, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31738450

ABSTRACT

Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3 Si)3 E]+ (E=O, S), by reacting [Me3 Si-H-SiMe3 ][B(C6 F5 )4 ] and Me3 Si[CB] (CB- =carborate=[CHB11 H5 Cl6 ]- , [CHB11 Cl11 ]- ) with Me3 Si-E-SiMe3 . In the reaction of Me3 Si-O-SiMe3 with [Me3 Si-H-SiMe3 ][B(C6 F5 )4 ], a ligand exchange was observed in the [Me3 Si-H-SiMe3 ]+ cation leading to the surprising formation of the persilylated [(Me3 Si)2 (Me2 (H)Si)O]+ oxonium ion in a formal [Me2 (H)Si]+ instead of the desired [Me3 Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3 Si)3 S]+ ion was formed and isolated as [B(C6 F5 )4 ]- and [CB]- salt, when Me3 Si-S-SiMe3 was treated with either [Me3 Si-H-SiMe3 ][B(C6 F5 )4 ] or Me3 Si[CB]. However, the addition of Me3 Si[CB] to Me3 Si-O-SiMe3 unexpectedly led to the release of Me4 Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3 Si-µO-SiMe2 ]2 [CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3 Si)3 E]+ and [(Me3 Si)2 (Me2 (H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3 Si)3 E]+ ion into a cyclic dichalconium dication [Me3 Si-µE-SiMe2 ]2 2+ .

16.
Chemistry ; 26(16): 3571-3577, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-31846108

ABSTRACT

The thermodynamics of halogen bonding of a series of isostructural Group 10 metal pincer fluoride complexes of the type [(3,5-R2 -tBu POCOPtBu )MF] (3,5-R2 -tBu POCOPtBu =κ3 -C6 HR2 -2,6-(OPtBu2 )2 with R=H, tBu, COOMe; M=Ni, Pd, Pt) and iodopentafluorobenzene was investigated. Based on NMR experiments at different temperatures, all complexes 1-tBu (R=tBu, M=Ni), 2-H (R=H, M=Pd), 2-tBu (R=tBu, M=Pd), 2-COOMe (R=COOMe, M=Pd) and 3-tBu (R=tBu, M=Pt) form strong halogen bonds with Pd complexes showing significantly stronger binding to iodopentafluorobenzene. Structural and computational analysis of a model adduct of complex 2-tBu with 1,4-diiodotetrafluorobenzene as well as of structures of iodopentafluorobenzene in toluene solution shows that formation of a type I contact occurs.

17.
ChemSusChem ; 12(15): 3458-3462, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31161712

ABSTRACT

An electrolyte solution of tetrabutylphosphonium hydroxide (TBPH) in water can dissolve over 20 wt % of cellulose in minutes and therefore constitutes a promising alternative green solvent system compared to known imidazolium- or dimethylacetamide-based systems. Overcoming the disadvantage of the extremely high viscosity of TBPH/cellulose solutions can facilitate their use for various applications. In this study, the application of cosolvents for the reduction, and thus adjustability, of the viscosity is addressed. Even well-known antisolvents can be easily deployed, resulting in a dramatic drop in viscosity. High concentrations of cosolvents (excluding ethanol) are tolerated without precipitation of the dissolved cellulose. Furthermore, the effect of the cosolvents on the additional dissolution of cellulose is discussed. The amount of dissolved cellulose is quantified by 13 C NMR spectroscopy.

18.
Chem Sci ; 10(12): 3486-3493, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30996939

ABSTRACT

Molecular switches are molecules that can reversibly be shifted between at least two stable states with different physical and chemical properties, making them interesting for application as chemical sensors or molecular machines. We recently discovered that five-membered, cyclic biradicals based on group 15 elements are efficient and robust photochemical switches that can be activated by red light. The quantum yield of the photo-isomerization is as high as 24.6%, and the thermal equilibration of the photo-activation product proceeds rapidly at ambient temperature. The fully reversible process was studied by experimental and high-level ab initio techniques. We could further demonstrate that the biradical character could be completely turned on and off, so the system could be applied to control chemical equilibria that involve activation products of the cyclic biradicals.

19.
Angew Chem Int Ed Engl ; 58(20): 6540-6544, 2019 May 13.
Article in English | MEDLINE | ID: mdl-30888089

ABSTRACT

The reaction of HN3 with the strong Lewis acid B(C6 F5 )3 led to the formation of a very labile HN3 ⋅B(C6 F5 )3 adduct, which decomposed to an aminoborane, H(C6 F5 )NB(C6 F5 )2 , above -20 °C with release of molecular nitrogen and simultaneous migration of a C6 F5 group from boron to the nitrogen atom. The intermediary formation of azide-borane adducts with B(C6 F5 )3 was also demonstrated for a series of organic azides, RN3 (R=Me3 Si, Ph, 3,5-(CF3 )2 C6 H3 ), which also underwent Staudinger-like decomposition along with C6 F5 group migration. In accord with experiment, computations revealed rather small barriers towards nitrogen release for these highly labile azide adducts for all organic substituents except R=Me3 Si (m.p. 120 °C, Tdec =189 °C). Hydrolysis of the aminoboranes provided C6 F5 -substituted amines, HN(R)(C6 F5 ), in good yields.

20.
Angew Chem Int Ed Engl ; 58(16): 5452-5456, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30776183

ABSTRACT

Starting from fluoridosilicate precursors in neat cyanotrimethylsilane, Me3 Si-CN, a series of different ammonium salts [R3 NMe]+ (R=Et, n Pr, n Bu) with the novel [SiF(CN)5 ]2- and [Si(CN)6 ]2- dianions was synthesized in facile, temperature controlled F- /CN- exchange reactions. Utilizing decomposable, non-innocent cations, such as [R3 NH]+ , it was possible to generate metal salts of the type M2 [Si(CN)6 ] (M+ =Li+ , K+ ) via neutralization reactions with the corresponding metal hydroxides. The ionic liquid [BMIm]2 [Si(CN)6 ] (m.p.=72 °C, BMIm=1-butyl-3-methylimidazolium) was obtained by a salt metathesis reaction. All the synthesized salts could be isolated in good yields and were fully characterized.

SELECTION OF CITATIONS
SEARCH DETAIL