Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
PeerJ ; 12: e16961, 2024.
Article En | MEDLINE | ID: mdl-38426137

Colophospermum mopane (mopane) forms mono-dominant woodlands covering extensive areas of southern Africa. Mopane provides a staple foodstuff for elephants, who hedge woodland by reducing trees to small trees or shrubs, leaving emergent trees which are too large to be pollarded. Emergent trees are important for supporting faunal biodiversity, but they can be killed by ringbarking. This study first examined the influence of elephant density on woodland transformation and the height distribution of canopy volume, and, second, whether canopy volume is maintained, and tall emergent trees too large to be broken can persist, under chronic elephant utilisation. Three regimes of 0.23, 0.59 and 2.75 elephants km-2 differed in vegetation structure and the height structure of trees. Areas under the highest elephant density supported the lowest total canopy volume owing to less canopy for plants >3 m in height, shorter trees, loss of most trees 6-10 m in height, but trees >10 m in height (>45 cm stem diameter) persisted. Under eight years of chronic utilisation by elephants, transformed mopane woodland maintained its plant density and canopy volume. Plant density was greatest for the 0-1 m height class, whereas the 3.1-6 m height class provided the bulk of canopy volume, and the 1.1-3 m height layer contained the most canopy volume. Emergent trees (>10 m in height) suffered a loss of 1.4% per annum as a result of debarking. Canopy dieback of emergent trees increased conspicuously when more than 50% of a stem was debarked, and such trees could be toppled by windthrow before being ringbarked. Thus relict emergent trees will slowly be eliminated but will not be replaced whilst smaller trees are being maintained in a pollarded state. Woodland transformation has not markedly reduced canopy volume available to elephants, but the slow attrition of emergent trees may affect supported biota, especially cavity-dependent vertebrate species, making use of these trees.


Elephants , Fabaceae , Animals , Trees , Forests , Plants
2.
Tree Physiol ; 43(12): 2121-2130, 2023 12 12.
Article En | MEDLINE | ID: mdl-37672220

The hydraulic death hypothesis suggests that fires kill trees by damaging the plant's hydraulic continuum in addition to stem cambium. A corollary to this hypothesis is that plants that survive fires possess 'pyrohydraulic' traits that prevent heat-induced embolism formation in the xylem and aid post-fire survival. We examine whether hydraulic segmentation within stem xylem may act as such a trait. To do so, we measured the percentage loss of conductance (PLC) and vulnerability to embolism axially along segments of branches exposed to heat plumes in two differing species, fire-tolerant Eucalyptus cladocalyx F. Muell and fire-sensitive Kiggelaria africana L., testing model predictions that fire-tolerant species would exhibit higher degrees of hydraulic segmentation (greater PLC in the distal parts of the branch than the basal) than fire-intolerant species (similar PLC between segments). Following exposure to a heat plume, K. africana suffered between 73 and 84% loss of conductance in all branch segments, whereas E. cladocalyx had 73% loss of conductance in whole branches, including the distal tips, falling to 29% in the most basal part of the branch. There was no evidence for differences in resistance segmentation between the species, and there was limited evidence for differences in distal vulnerability to embolism across the branches. Hydraulic segmentation in E. cladocalyx may enable it to resprout effectively post-fire with a functional hydraulic system. The lack of hydraulic segmentation in K. africana reveals the need to understand possible trade-offs associated with hydraulic segmentation in long-lived woody species with respect to drought and fire.


Embolism , Fires , Wood , Xylem , Trees , Droughts , Water
3.
Ann Bot ; 132(6): 1107-1118, 2023 12 05.
Article En | MEDLINE | ID: mdl-37632775

BACKGROUND AND AIMS: Sexual polymorphisms of flowers have traditionally been interpreted as devices that promote cross-pollination, but they may also represent adaptations for exploiting particular pollination niches in local environments. The cross-pollination function of enantiostyly, characterized by flowers having either left- or right-deflected styles, has been uncertain in some lineages, such as the Haemodoraceae, because the positioning of stamens and styles is not always completely reciprocal among morphs. METHODS: We examined the floral biology of populations of the poorly known species Barberetta aurea (Haemodoraceae) across its native range in South Africa to establish the general features of its enanatiostylous reproductive system and the agents and mechanism of pollen transfer. RESULTS: We confirmed that B. aurea has a system of dimorphic enantiostyly. Style morph ratios varied among populations sampled, but with an overall tendency to being equal. Crossing experiments demonstrated that B. aurea is fully self-compatible, that intra- and inter-morph crosses are equally fertile and that it is wholly dependent on pollinator visits for seed production. Pollination is mainly by syrphid flies that transfer the sticky pollen via their wings, which contact the anthers and stigma precisely as they hover during approach and feeding. The majority of syrphid fly visitors feed on a film of highly concentrated nectar situated at the base of ultraviolet-absorbent 'nectar guides'. Because one of the three stamens is deflected in the same direction as the style, we predicted a high likelihood of intra-morph pollination, and this was corroborated by patterns of transfer of coloured dye particles in cage experiments involving syrphid flies. CONCLUSIONS: Barbaretta aurea exhibits dimorphic enantiostyly and, in contrast to most enantiostylous species, which are pollinated by bees, its flowers are specialized for pollination by syrphid flies. The lack of complete reciprocity of the enantiostylous arrangement of sexual organs facilitates both inter- and intra-morph pollen transfer on the wings of these flies.


Diptera , Pollination , Bees , Animals , Plant Nectar , Diptera/genetics , Flowers/genetics , Seeds , Reproduction
4.
Naturwissenschaften ; 109(5): 47, 2022 Aug 27.
Article En | MEDLINE | ID: mdl-36029364

The function of flower orientation is much debated, with adaptation to pollinator mouthparts being a particularly compelling explanation, but also one that has lacked empirical support from broad-scale comparative studies. The two families of long-proboscid fly pollinators show similar hovering behaviour while feeding on nectar but differ in the biomechanics of their proboscides which can be up to 80 mm in length: Tabanidae have a fixed forward-pointing proboscis while Nemestrinidae can swivel their proboscis downwards. We predicted that this difference has implications for the evolution of flower orientation. We established the flower angles of 156 South African plant species specialised for pollination by long-proboscid flies. Using a phylogenetically corrected analysis, we found that flowers pollinated by Tabanidae tend to be horizontally orientated, while those pollinated by Nemestrinidae tend to be more variable in orientation and more often vertically orientated. These results confirm the importance of pollinator biomechanics for the evolution of floral traits and highlight a potential mechanism of reproductive isolation between sympatric plant species pollinated by different long-proboscid fly families.


Butterflies , Diptera , Animals , Biomechanical Phenomena , Flowers , Plant Nectar , Plants , Pollination
5.
Sci Rep ; 12(1): 1407, 2022 01 26.
Article En | MEDLINE | ID: mdl-35082381

Female plants not only flower but also produce resource-rich seeds, fruits, and cones. Thus, it is generally considered that female plants allocate more resources to sexual reproduction than male plants and that this allocation difference can explain vegetative dimorphism, such as greater leaf size in females. We found significant sexual vegetative differences in the dioecious and serotinous species, Aulax umbellata and A. cancellata. Plant height, annual branch length and canopy spread were greater in males whereas leaf size, branch thickness and branch number were greater in females. Sex ratios and basal stem area were, however, equal in the sexes. Equal sex ratios imply equal allocation to sexual reproduction and equal stem areas imply equal resource use and biomass, and thus allocation to vegetative growth. Given equal allocation to reproduction and resource use, we suggest that the vegetative dimorphism is driven by intra-male-competition to be more visually conspicuous to pollinators. This implies that plant architecture is both a vegetative and a reproductive trait.


Flowers/anatomy & histology , Fruit/anatomy & histology , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Proteaceae/anatomy & histology , Biomass , Flowers/physiology , Fruit/physiology , Plant Leaves/physiology , Plant Stems/physiology , Pollination/physiology , Proteaceae/physiology , Sex Characteristics , South Africa
6.
Commun Biol ; 3(1): 698, 2020 11 20.
Article En | MEDLINE | ID: mdl-33219348

Fairy circles are striking regularly sized and spaced, bare circles surrounded by Stipagrostis grasses that occur over thousands of square kilometres in Namibia. The mechanisms explaining their origin, shape, persistence and regularity remain controversial. One hypothesis for the formation of vegetation rings is based on the centrifugal expansion of a single individual grass plant, via clonal growth and die-back in the centre. Clonality could explain FC origin, shape and long-term persistence as well as their regularity, if one clone competes with adjacent clones. Here, we show that for virtually all tested fairy circles the periphery is not exclusively made up of genetically identical grasses, but these peripheral grasses belong to more than one unrelated genet. These results do not support a clonal explanation for fairy circles. Lack of clonality implies that a biological reason for their origin, shape and regularity must emerge from competition between near neighbor individuals within each fairy circle. Such lack of clonality also suggests a mismatch between longevity of fairy circles versus their constituent plants. Furthermore, our findings of lack of clonality have implications for some models of spatial patterning of fairy circles that are based on self-organization.


Poaceae/classification , Poaceae/physiology , Ecosystem , Namibia
7.
Sci Rep ; 10(1): 11719, 2020 07 16.
Article En | MEDLINE | ID: mdl-32678201

Chronic herbivory by elephants rarely eliminates any species of woody savanna plants because these plants are typically vigorous basal resprouters after damage by fire or herbivory. In some instances, resprouting after elephant herbivory even increases stem numbers per unit area compared to protected areas. It is thus difficult to know whether an area has been severely degraded by elephant herbivory or not because although trees may be severely reduced in size, they will still be present and may even be relatively dense. By using an elephant exclosure in the Kruger National Park, South Africa, we demonstrate that this resprouting ability masks the fact that entire populations of a widespread African palm, Hyphaene petersiana, are prevented from reaching sexual maturity by chronic elephant herbivory. Besides sterilizing these palms and thus preventing their evolution and seed dispersal, the absence of the palm fruits, flowers and tall stems has other negative biodiversity impacts on their associated fauna. We suggest that to determine sustainable elephant impacts on savanna plants, conservation managers also use the reproductive condition of savanna plants rather than their presence, height or stem density.


Arecaceae/growth & development , Elephants/physiology , Grassland , Herbivory , Parks, Recreational , Trees/growth & development , Animals , Biodiversity , Conservation of Natural Resources , Flowers/growth & development , Plant Stems/growth & development , Reproduction , Seeds/growth & development , South Africa
8.
PeerJ ; 7: e6835, 2019.
Article En | MEDLINE | ID: mdl-31179169

Despite the diversity of branching architectures in plants, the impact of this morphological variation on hydraulic efficiency has been poorly studied. Branch junctions are commonly thought to be points of high hydraulic resistance, but adjustments in leaf area or xylem conduit abundance or dimensions could compensate for the additional hydraulic resistance of nodal junctions at the level of the entire shoot. Here we used the sexually dimorphic genus Leucadendron (Proteaceae) to test whether variation in branch ramification impacts shoot hydraulic efficiency. We found that branch ramification was related to leaf traits via Corner's rules such that more highly ramified shoots had smaller leaves, but that branch ramification had little consistent impact on shoot hydraulic efficiency, whether measured on a leaf area or stem cross-sectional area basis. These results suggest that the presumed increase in resistance associated with branching nodes can be compensated by other adjustments at the shoot level (e.g. leaf area adjustments, increased ramification to add additional branches in parallel rather than in series) that maintain hydraulic efficiency at the level of the entire shoot. Despite large morphological differences between males and females in the genus Leucadendron, which are due to differences in pollination and reproduction between the sexes, the physiological differences between males and females are minimal.

9.
PeerJ ; 6: e5654, 2018.
Article En | MEDLINE | ID: mdl-30280031

Most pollination ecosystem services studies have focussed on wild pollinators and their dependence on natural floral resources adjacent to crop fields. However, managed pollinators depend on a mixture of floral resources that are spatially separated from the crop field. Here, we consider the supporting role these resources play as an ecosystem services provider to quantify the use and availability of floral resources, and to estimate their relative contribution to support pollination services of managed honeybees. Beekeepers supplying pollination services to the Western Cape deciduous fruit industry were interviewed to obtain information on their use of floral resources. For 120 apiary sites, we also analysed floral resources within a two km radius of each site based on geographic data. The relative availability of floral resources at sites was compared to regional availability. The relative contribution of floral resources-types to sustain managed honeybees was estimated. Beekeepers showed a strong preference for eucalypts and canola. Beekeepers selectively placed more hives at sites with eucalypt and canola and less with natural vegetation. However, at the landscape-scale, eucalypt was the least available resource, whereas natural vegetation was most common. Based on analysis of apiary sites, we estimated that 700,818 ha of natural vegetation, 73,910 ha of canola fields, and 10,485 ha of eucalypt are used to support the managed honeybee industry in the Western Cape. Whereas the Cape managed honeybee system uses a bee native to the region, alien plant species appear disproportionately important among the floral resources being exploited. We suggest that an integrated approach, including evidence from interview and landscape data, and fine-scale biological data is needed to study floral resources supporting managed honeybees.

10.
New Phytol ; 211(3): 828-38, 2016 08.
Article En | MEDLINE | ID: mdl-27152877

Recent work suggests that hydraulic mechanisms, rather than cambium necrosis, may account for rapid post-fire tree mortality. We experimentally tested for xylem cavitation, as a result of exposure to high-vapour-deficit (D) heat plumes, and permanent xylem deformation, as a result of thermal softening of lignin, in two tree species differing in fire tolerance. We measured percentage loss of conductance (PLC) in distal branches that had been exposed to high-D heat plumes or immersed in hot water baths (high temperature, but not D). Results were compared with predictions from a parameterized hydraulic model. Physical damage to the xylem was examined microscopically. Both species suffered c. 80% PLC when exposed to a 100°C plume. However, at 70°C, the fire-sensitive Kiggelaria africana suffered lower PLC (49%) than the fire-resistant Eucalytpus cladocalyx (80%). Model simulations suggested that differences in PLC between species were a result of greater hydraulic segmentation in E. cladocalyx. Kiggelaria africana suffered considerable PLC (59%), as a result of heat-induced xylem deformation, in the water bath treatments, but E. cladocalyx did not. We suggest that a suite of 'pyrohydraulic' traits, including hydraulic segmentation and heat sensitivity of the xylem, may help to explain why some tree species experience rapid post-fire mortality after low-intensity fires and others do not.


Hot Temperature , Trees/physiology , Xylem/physiology , Analysis of Variance , Computer Simulation , Eucalyptus/physiology , Models, Biological , Plant Leaves/physiology , Time Factors , Xylem/ultrastructure
11.
Evolution ; 70(1): 126-39, 2016 Jan.
Article En | MEDLINE | ID: mdl-26593965

Transitions between animal and wind pollination have occurred in many lineages and have been linked to various floral modifications, but these have seldom been assessed in a phylogenetic framework. In the dioecious genus Leucadendron (Proteaceae), transitions from insect to wind pollination have occurred at least four times. Using analyses that controlled for relatedness among Leucadendron species, we investigated how these transitions shaped the evolution of floral structural and signaling traits, including the degree of sexual dimorphism in these traits. Pollen grains of wind-pollinated species were found to be smaller, more numerous, and dispersed more efficiently in wind than were those of insect-pollinated species. Wind-pollinated species also exhibited a reduction in spectral contrast between showy subtending leaves and background foliage, reduced volatile emissions, and a greater degree of sexual dimorphism in color and scent. Uniovulate flowers and inflorescence condensation are conserved ancestral features in Leucadendron and likely served as exaptations in shifts to wind pollination. These results offer insights into the key modifications of male and female floral traits involved in transitions between insect and wind pollination.


Biological Evolution , Pollination , Proteaceae/physiology , Animals , Flowers/growth & development , Insecta/physiology , Phenotype , Phylogeny , Proteaceae/growth & development , Wind
12.
Sci Total Environ ; 534: 31-42, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-25887372

Postfire resprouting and recruitment from seed are key plant life-history traits that influence population dynamics, community composition and ecosystem function. Species can have one or both of these mechanisms. They confer resilience, which may determine community composition through differential species persistence after fire. To predict ecosystem level responses to changes in climate and fire conditions, we examined the proportions of these plant fire-adaptive traits among woody growth forms of 2880 taxa, in eight fire-prone ecosystems comprising ~87% of Australia's land area. Shrubs comprised 64% of the taxa. More tree (>84%) than shrub (~50%) taxa resprouted. Basal, epicormic and apical resprouting occurred in 71%, 22% and 3% of the taxa, respectively. Most rainforest taxa (91%) were basal resprouters. Many trees (59%) in frequently-burnt eucalypt forest and savanna resprouted epicormically. Although crown fire killed many mallee (62%) and heathland (48%) taxa, fire-cued seeding was common in these systems. Postfire seeding was uncommon in rainforest and in arid Acacia communities that burnt infrequently at low intensity. Resprouting was positively associated with ecosystem productivity, but resprouting type (e.g. basal or epicormic) was associated with local scale fire activity, especially fire frequency. Although rainforest trees can resprout they cannot recruit after intense fires and may decline under future fires. Semi-arid Acacia communities would be susceptible to increasing fire frequencies because they contain few postfire seeders. Ecosystems dominated by obligate seeders (mallee, heath) are also susceptible because predicted shorter inter-fire intervals will prevent seed bank accumulation. Savanna may be resilient to future fires because of the adaptive advantage of epicormic resprouting among the eucalypts. The substantial non-resprouting shrub component of shrublands may decline, but resilient Eucalyptus spp. will continue to dominate under future fire regimes. These patterns of resprouting and postfire seeding provide new insights to ecosystem assembly, resilience and vulnerability to changing fire regimes on this fire-prone continent.


Ecosystem , Environmental Monitoring , Fires , Australia , Plants , Wood
13.
Nat Plants ; 1: 15141, 2015 Oct 05.
Article En | MEDLINE | ID: mdl-27251393

The large brown, round, strongly scented seeds of Ceratocaryum argenteum (Restionaceae) emit many volatiles found to be present in herbivore dung. These seeds attract dung beetles that roll and bury them. As the seeds are hard and offer no reward to the dung beetles, this is a remarkable example of deception in plant seed dispersal.

14.
Ann Bot ; 113(2): 301-15, 2014 Jan.
Article En | MEDLINE | ID: mdl-24071499

BACKGROUND AND AIMS: According to the Grant-Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant-Stebbins model. METHODS AND KEY RESULTS: Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography-mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two shifts from traits associated with short-billed Orange-breasted sunbird pollination: one towards traits associated with moth pollination, and one towards traits associated with pollination by long-billed Malachite sunbirds. The latter shift coincided with the colonization of Namaqualand in which Orange-breasted sunbirds are absent. CONCLUSIONS: Erica plukenetii is characterized by three pollination ecotypes, but only the evolutionary transition from short- to long-billed sunbird pollination can be clearly explained by the Grant-Stebbins model. Corolla length is a key character for both ecotype transitions, while floral scent emission was important for the transition from bird to moth pollination.


Biological Evolution , Birds/physiology , Ecotype , Ericaceae/physiology , Moths/physiology , Pollination/physiology , Animals , Bayes Theorem , Carbohydrates/analysis , Ericaceae/anatomy & histology , Flowers/anatomy & histology , Odorants , Phylogeny , Pigmentation , Plant Nectar , Quantitative Trait, Heritable , South Africa
16.
Oecologia ; 152(1): 115-20, 2007 May.
Article En | MEDLINE | ID: mdl-17221256

Recent studies have shown that mutualisms often have variable outcomes in space and time. In particular, the outcomes may be dependent on the density of the partners with unimodal or saturating outcomes providing stability to the mutualism. We examine density-dependent outcomes of an obligate, species-specific mutualism between a South African carnivorous plant (Roridula dentata) and a hemipteran (Pameridea) that facilitates prey digestion, but also sucks plant sap. Plants occur in sandy, leached, nitrogen-poor soils and have no digestive enzymes to digest prey. Instead they rely on obligately dependent hemipterans to supply nitrogen by digesting prey for them and defecating on their leaves. We documented the densities of Pameridea on Roridula in the field. In the greenhouse, we manipulated the hemipteran densities on Roridula and measured the mean relative growth rates of plants with differing hemipteran densities. Plants exhibited a unimodal response to the density of their mutualist partners. Those with no hemipterans had negative growth rates, suggesting that hemipterans are important in facilitating nitrogen absorption. Plants with intermediate hemipteran densities had positive growth rates but growth rates were negative under very high hemipteran densities. Our research provides support for variable and unimodal outcomes in mutualism. Unimodal outcomes may be particularly important in obligate mutualisms and this is one of the few studied outside of pollinating seed parasite mutualisms. In this system, extrinsic factors such as other predators may affect the mutualism by altering the numbers of hemipterans.


Digestion/physiology , Heteroptera/physiology , Magnoliopsida/physiology , Nitrogen/metabolism , Symbiosis , Animals , Feeding Behavior , Magnoliopsida/growth & development , Magnoliopsida/metabolism , Population Density
17.
BMC Ecol ; 4: 3, 2004 Apr 07.
Article En | MEDLINE | ID: mdl-15068486

BACKGROUND: While fire has been used in some instances to control the increase of woody plants, it has also been reported that fire may cause an increase in certain fire-tolerant Acacia tree species. This study investigated germination of Acacia karroo, A. luederitzii and Dichrostachys cinerea, thought to be increasing in density, as well as the historically successful encroaching woody species, A. nilotica, in savanna grassland, Hluhluwe-iMfolozi Park, South Africa. A. karroo is thought to be replacing A. nilotica as the dominant microphyllous species in the park. We tested the hypothesis that observed increases in certain woody plants in a savanna were related to seed germination and seedling establishment. Germination is compared among species for burnt and unburnt seeds on burnt and unburnt plots at three different locations for both hot and cool fires. RESULTS: Acacia karroo showed higher germination (A. karroo 5.1%, A. nilotica 1.5% and A. luederitzii 5.0%) levels and better establishment (A. karroo 4.9%, A. nilotica 0.4% and A. luederitzii 0.4%). Seeds of the shrub Dichrostachys cinerea did not germinate in the field after fire and it is thought that some other germination cue is needed. On average, burning of A. karroo, A. nilotica and A. luederitzii seeds did not affect germination. There was a significant difference in the germination of burnt seeds on burnt sites (4.5%) and burnt seeds on unburnt plots (2.5%). Similarly, unburnt seeds on unburnt sites germinated better (4.9%) than unburnt seeds on burnt sites (2.8%). CONCLUSION: We conclude that a combination of factors may be responsible for the success of A. karroo and that fires may not be hot enough or may occur at the wrong time of year to control A. karroo establishment in HiP. Although germination and establishment of A. karroo was higher than for A. nilotica a competitive advantage after fire could not be shown.


Acacia/physiology , Fabaceae/physiology , Fires , Germination/physiology , Hot Temperature , Seedlings/growth & development , Acacia/growth & development , Fabaceae/growth & development , Models, Statistical , South Africa
18.
Nature ; 428(6985): 821-7, 2004 Apr 22.
Article En | MEDLINE | ID: mdl-15103368

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.


Climate , Geography , Plant Leaves/physiology , Biomass , Ecosystem , Models, Biological , Nutritional Physiological Phenomena , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/growth & development , Rain
19.
Am J Bot ; 90(7): 1009-15, 2003 Jul.
Article En | MEDLINE | ID: mdl-21659199

Reproductive assurance is frequently used to explain the evolution of selfing but has become controversial from lack of evidence. We studied the pollination system of the near carnivorous plant genus Roridula and showed that reproductive assurance is important in this system. Hemipterans have a digestive mutualism with Roridula and have been implicated in pollination but flowers show adaptations to hymenopteran pollination. We deduce that hemipterans are the primary pollinators of Roridula because seed set is significantly reduced when hemipterans are excluded from the flowers. Using allozyme electrophoresis, we show that hemipterans are responsible for mostly selfed progeny. Although bees still pollinate Roridula on very rare occasions, their exclusion does not affect seed set. The complicated floral structures that occur in Roridula most likely evolved as adaptations for bee pollination. Resident hemipterans facilitate selfing by Roridula, and this acts as a reproductive assurance mechanism because it increases seed production and ensures that plants still reproduce in the absence of more motile, outcrossing pollinators.

...