Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Gene ; 828: 146476, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35413393

ABSTRACT

Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.


Subject(s)
Saccharum , Biomass , Canes , Gene Expression Regulation, Plant , Lignin , Plant Breeding , Saccharum/genetics , Saccharum/metabolism
2.
Microorganisms ; 9(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34442783

ABSTRACT

Sisal is a common name for different plant varieties in the genus Agave (especially Agave sisalana) used for high-quality natural leaf fiber extraction. Despite the economic value of these plants, we still lack information about the diversity of viruses (virome) in non-tequilana species from the genus Agave. In this work, by associating RNA and DNA deep sequencing we were able to identify 25 putative viral species infecting A. sisalana, A. fourcroydes, and Agave hybrid 11648, including one strain of Cowpea Mild Mottle Virus (CPMMV) and 24 elements likely representing new viruses. Phylogenetic analysis indicated they belong to at least six viral families: Alphaflexiviridae, Betaflexiviridae, Botourmiaviridae, Closteroviridae, Partitiviridae, Virgaviridae, and three distinct unclassified groups. We observed higher viral taxa richness in roots when compared to leaves and stems. Furthermore, leaves and stems are very similar diversity-wise, with a lower number of taxa and dominance of a single viral species. Finally, approximately 50% of the identified viruses were found in all Agave organs investigated, which suggests that they likely produce a systemic infection. This is the first metatranscriptomics study focused on viral identification in species from the genus Agave. Despite having analyzed symptomless individuals, we identified several viruses supposedly infecting Agave species, including organ-specific and systemic species. Surprisingly, some of these putative viruses are probably infecting microorganisms composing the plant microbiota. Altogether, our results reinforce the importance of unbiased strategies for the identification and monitoring of viruses in plant species, including those with asymptomatic phenotypes.

3.
New Phytol ; 231(1): 365-381, 2021 07.
Article in English | MEDLINE | ID: mdl-33826751

ABSTRACT

Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.


Subject(s)
Agaricales , Cacao , Solanum lycopersicum , Cytokinins , Solanum lycopersicum/genetics , Phytoplasma Disease , Plant Diseases
4.
DNA Res ; 26(3): 205-216, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30768175

ABSTRACT

The Polyploid Gene Assembler (PGA), developed and tested in this study, represents a new strategy to perform gene-space assembly from complex genomes using low coverage DNA sequencing. The pipeline integrates reference-assisted loci and de novo assembly strategies to construct high-quality sequences focused on gene content. Pipeline validation was conducted with wheat (Triticum aestivum), a hexaploid species, using barley (Hordeum vulgare) as reference, that resulted in the identification of more than 90% of genes and several new genes. Moreover, PGA was used to assemble gene content in Saccharum spontaneum species, a parental lineage for hybrid sugarcane cultivars. Saccharum spontaneum gene sequence obtained was used to reference-guided transcriptome analysis of six different tissues. A total of 39,234 genes were identified, 60.4% clustered into known grass gene families. Thirty-seven gene families were expanded when compared with other grasses, three of them highlighted by the number of gene copies potentially involved in initial development and stress response. In addition, 3,108 promoters (many showing tissue specificity) were identified in this work. In summary, PGA can reconstruct high-quality gene sequences from polyploid genomes, as shown for wheat and S. spontaneum species, and it is more efficient than conventional genome assemblers using low coverage DNA sequencing.


Subject(s)
Genome, Plant , Saccharum/genetics , Whole Genome Sequencing , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Hordeum/genetics , Organ Specificity , Phylogeny , Sequence Analysis, RNA , Triticum/genetics
5.
BMC Genomics ; 19(1): 58, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343217

ABSTRACT

BACKGROUND: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS: We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION: Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.


Subject(s)
Ascomycota/genetics , Cacao/microbiology , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Genome, Fungal , Genomics/methods , Phosphoinositide Phospholipase C/genetics , Ascomycota/metabolism , Evolution, Molecular , Fungal Proteins/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phosphoinositide Phospholipase C/chemistry , Phosphoinositide Phospholipase C/metabolism , Phylogeny , Protein Conformation
6.
Sci Rep ; 6: 29543, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27404280

ABSTRACT

Microbiome analysis using metagenomic sequencing has revealed a vast microbial diversity associated with plants. Identifying the molecular functions associated with microbiome-plant interaction is a significant challenge concerning the development of microbiome-derived technologies applied to agriculture. An alternative to accelerate the discovery of the microbiome benefits to plants is to construct microbial culture collections concomitant with accessing microbial community structure and abundance. However, traditional methods of isolation, cultivation, and identification of microbes are time-consuming and expensive. Here we describe a method for identification of microbes in culture collections constructed by picking colonies from primary platings that may contain single or multiple microorganisms, which we named community-based culture collections (CBC). A multiplexing 16S rRNA gene amplicon sequencing based on two-step PCR amplifications with tagged primers for plates, rows, and columns allowed the identification of the microbial composition regardless if the well contains single or multiple microorganisms. The multiplexing system enables pooling amplicons into a single tube. The sequencing performed on the PacBio platform led to recovery near-full-length 16S rRNA gene sequences allowing accurate identification of microorganism composition in each plate well. Cross-referencing with plant microbiome structure and abundance allowed the estimation of diversity and abundance representation of microorganism in the CBC.


Subject(s)
Genetics, Microbial , Metagenomics/methods , Microbiological Techniques , Microbiota , Sequence Analysis, DNA/methods , Culture Techniques , DNA, Bacterial , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Saccharum/microbiology
7.
Microb Cell Fact ; 14: 13, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25633848

ABSTRACT

BACKGROUND: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.


Subject(s)
Bacteria/genetics , Ethanol/metabolism , Gene Expression Profiling , Saccharomyces cerevisiae/genetics , Bacteria/growth & development , Bacteria/metabolism , Biomass , Brazil , Fermentation , Flocculation , Gene Ontology , Genotype , Industrial Microbiology/methods , Kinetics , Microbial Interactions , Mutation , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharum/metabolism
8.
Plant Cell ; 26(11): 4245-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25371547

ABSTRACT

Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.


Subject(s)
Agaricales/physiology , Cacao/genetics , Host-Pathogen Interactions , Plant Diseases/microbiology , Transcriptome , Agaricales/pathogenicity , Base Sequence , Cacao/cytology , Cacao/microbiology , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Models, Biological , Molecular Sequence Data , Mycelium , Photosynthesis , Plant Proteins/metabolism , Sequence Analysis, RNA , Virulence
9.
DNA Res ; 20(6): 567-81, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23857904

ABSTRACT

We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3'-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.


Subject(s)
Genome, Protozoan , Leishmania/genetics , Host-Parasite Interactions , Humans , Leishmania/metabolism , Leishmaniasis, Cutaneous/parasitology , Models, Genetic , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny
10.
BMC Genomics ; 14: 201, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23521840

ABSTRACT

BACKGROUND: Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E. grandis and E. urophylla. E. globulus is adapted to subtropical/temperate areas and is considered a source of high-quality cellulose; E. grandis grows rapidly and is adapted to tropical/subtropical climates; and E. urophylla, though less productive, is considered a source of genes related to robustness. Wood, or secondary xylem, results from cambium vascular differentiation and is mostly composed of cellulose, lignin and hemicelluloses. In this study, the xylem transcriptomes of the three Eucalyptus species were investigated in order to provide insights on the particularities presented by each of these species. RESULTS: Data analysis showed that (1) most Eucalyptus genes are expressed in xylem; (2) most genes expressed in species-specific way constitutes genes with unknown functions and are interesting targets for future studies; (3) relevant differences were observed in the phenylpropanoid pathway: E. grandis xylem presents higher expression of genes involved in lignin formation whereas E. urophylla seems to deviates the pathway towards flavonoid formation; (4) stress-related genes are considerably more expressed in E. urophylla, suggesting that these genes may contribute to its robustness. CONCLUSIONS: The comparison of these three transcriptomes indicates the molecular signatures underlying some of their distinct wood characteristics. This information may contribute to the understanding of xylogenesis, thus increasing the potential of genetic engineering approaches aiming at the improvement of Eucalyptus forest plantations productivity.


Subject(s)
Eucalyptus/genetics , Transcriptome , Cell Wall/genetics , Cell Wall/metabolism , Contig Mapping , Databases, Factual , Eucalyptus/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Xylem/genetics , Xylem/metabolism
11.
BMC Genomics ; 14: 91, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23394930

ABSTRACT

BACKGROUND: The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated "omics" approaches. RESULTS: The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. CONCLUSIONS: The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.


Subject(s)
Ascomycota/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Mitochondrial Proteins/genetics , Ascomycota/classification , Ascomycota/pathogenicity , Cacao/genetics , Cacao/microbiology , Computational Biology , Gene Expression Regulation, Fungal , Mitochondria/genetics , Mitochondria/metabolism , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Proteome/analysis , Proteome/genetics
12.
PLoS One ; 7(9): e45929, 2012.
Article in English | MEDLINE | ID: mdl-23029323

ABSTRACT

The widespread SCP/TAPS superfamily (SCP/Tpx-1/Ag5/PR-1/Sc7) has multiple biological functions, including roles in the immune response of plants and animals, development of male reproductive tract in mammals, venom activity in insects and reptiles and host invasion by parasitic worms. Plant Pathogenesis Related 1 (PR-1) proteins belong to this superfamily and have been characterized as markers of induced defense against pathogens. This work presents the characterization of eleven genes homologous to plant PR-1 genes, designated as MpPR-1, which were identified in the genome of Moniliophthora perniciosa, a basidiomycete fungus responsible for causing the devastating witches' broom disease in cacao. We describe gene structure, protein alignment and modeling analyses of the MpPR-1 family. Additionally, the expression profiles of MpPR-1 genes were assessed by qPCR in different stages throughout the fungal life cycle. A specific expression pattern was verified for each member of the MpPR-1 family in the conditions analyzed. Interestingly, some of them were highly and specifically expressed during the interaction of the fungus with cacao, suggesting a role for the MpPR-1 proteins in the infective process of this pathogen. Hypothetical functions assigned to members of the MpPR-1 family include neutralization of plant defenses, antimicrobial activity to avoid competitors and fruiting body physiology. This study provides strong evidence on the importance of PR-1-like genes for fungal virulence on plants.


Subject(s)
Agaricales/genetics , Cacao/genetics , Cacao/microbiology , Fungal Proteins/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Agaricales/chemistry , Agaricales/physiology , Amino Acid Sequence , Cacao/chemistry , Fungal Proteins/chemistry , Gene Expression Regulation, Fungal , Genes, Fungal , Genes, Plant , Host-Pathogen Interactions , Models, Molecular , Molecular Sequence Data , Plant Proteins/chemistry , Protein Conformation
13.
BMC Genomics ; 13: 562, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23083487

ABSTRACT

BACKGROUND: Synthetic biology allows the development of new biochemical pathways for the production of chemicals from renewable sources. One major challenge is the identification of suitable microorganisms to hold these pathways with sufficient robustness and high yield. In this work we analyzed the genome of the propionic acid producer Actinobacteria Propionibacterium acidipropionici (ATCC 4875). RESULTS: The assembled P. acidipropionici genome has 3,656,170 base pairs (bp) with 68.8% G + C content and a low-copy plasmid of 6,868 bp. We identified 3,336 protein coding genes, approximately 1000 more than P. freudenreichii and P. acnes, with an increase in the number of genes putatively involved in maintenance of genome integrity, as well as the presence of an invertase and genes putatively involved in carbon catabolite repression. In addition, we made an experimental confirmation of the ability of P. acidipropionici to fix CO2, but no phosphoenolpyruvate carboxylase coding gene was found in the genome. Instead, we identified the pyruvate carboxylase gene and confirmed the presence of the corresponding enzyme in proteome analysis as a potential candidate for this activity. Similarly, the phosphate acetyltransferase and acetate kinase genes, which are considered responsible for acetate formation, were not present in the genome. In P. acidipropionici, a similar function seems to be performed by an ADP forming acetate-CoA ligase gene and its corresponding enzyme was confirmed in the proteome analysis. CONCLUSIONS: Our data shows that P. acidipropionici has several of the desired features that are required to become a platform for the production of chemical commodities: multiple pathways for efficient feedstock utilization, ability to fix CO2, robustness, and efficient production of propionic acid, a potential precursor for valuable 3-carbon compounds.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial , Industrial Microbiology , Propionates/metabolism , Propionibacterium/genetics , Propionibacterium/metabolism , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Bacterial Proteins/metabolism , Base Composition , Base Sequence , Carbon Dioxide/metabolism , Metabolic Networks and Pathways , Molecular Sequence Data , Plasmids , Pyruvate Carboxylase/genetics , Pyruvate Carboxylase/metabolism , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
14.
Fungal Biol ; 116(5): 551-62, 2012 May.
Article in English | MEDLINE | ID: mdl-22559916

ABSTRACT

In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species.


Subject(s)
Agaricales/genetics , Agaricales/isolation & purification , Cacao/microbiology , Genome, Mitochondrial , Plant Diseases/microbiology , Agaricales/classification , Base Sequence , Basidiomycota , Chromosome Mapping , Molecular Sequence Data , Phylogeny
15.
J Mol Evol ; 70(1): 85-97, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20033398

ABSTRACT

Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: "Witches' Broom" and "Frosty Pod Rot", respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.


Subject(s)
Basidiomycota/genetics , Basidiomycota/pathogenicity , Biological Evolution , Cacao/microbiology , Gene Transfer, Horizontal/genetics , Genes, Fungal/genetics , Basidiomycota/enzymology , Bayes Theorem , Fungal Proteins/genetics , Hydrolases/genetics , Necrosis , Oxidoreductases/genetics , Phylogeny
16.
Genome Res ; 19(12): 2258-70, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19812109

ABSTRACT

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.


Subject(s)
Biofuels , Ethanol/metabolism , Genome, Fungal/genetics , Industrial Microbiology , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Brazil , Chromosomes, Fungal , DNA, Fungal/analysis , Diploidy , Fermentation , Haploidy , Molecular Sequence Data , Phenotype , Polymorphism, Genetic , Saccharomyces cerevisiae Proteins , Sequence Analysis, DNA , Spores, Fungal/genetics , Spores, Fungal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL