Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 15(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37717171

ABSTRACT

Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles.


Subject(s)
Aphids , Humans , Male , Animals , Female , Aphids/genetics , Pisum sativum , Genetic Variation , Parthenogenesis/genetics , Genomics , Reproduction, Asexual/genetics
2.
Mol Ecol ; 32(13): 3672-3685, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37143321

ABSTRACT

Transition from sexual reproduction to parthenogenesis constitutes a major life-history change with deep evolutionary consequences for sex-related traits, which are expected to decay. The pea aphid Acyrthosiphon pisum shows intraspecific reproductive polymorphism, with cold-resistant cyclically parthenogenetic (CP) lineages that alternate sexual and asexual generations and cold-sensitive obligately parthenogenetic (OP) lineages that produce only asexual females but still males. Here, the genotyping of 219 pea aphid lineages collected in cold-winter and mild-winter regions revealed contrasting population structures. Samples from cold-winter regions consisted mostly of distinct multilocus genotypes (MLGs) usually represented by a single sample (101 different MLGs for 111 samples) and were all phenotyped as CP. In contrast, fewer MLGs were found in mild-winter regions (28 MLGs for 108 samples), all but one being OP. Since the males produced by OP lineages are unlikely to pass on their genes (sexual females being rare in mild-winter regions), we tested the hypothesis that their traits could degenerate due to lack of selection by comparing male production and male reproductive success between OP and CP lineages. Male production was indeed reduced in OP lineages, but a less clear pattern was observed for male reproductive success: females mated with OP males laid fewer eggs (fertilized or not) but OP and CP males fertilized the same proportion of eggs. These differences may stem from the type of selective forces: male production may be counter-selected whereas male performances may evolve under the slower process of relaxed selection. The overall effective reproductive capacity of OP males could result from recent sex loss in OP lineages or underestimated reproductive opportunities.


Subject(s)
Aphids , Biological Evolution , Animals , Female , Male , Aphids/genetics , Parthenogenesis/genetics , Pisum sativum , Reproduction/genetics , Reproduction, Asexual/genetics
3.
Insects ; 10(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779157

ABSTRACT

Arctic ecosystems are subjected to strong environmental constraints that prevent both the colonization and development of many organisms. In Svalbard, few aphid species have established permanent populations. These high arctic aphid species have developed peculiar life-history traits such as shortened life cycles and reduced dispersal capacities. Here, we present data on the distribution and population genetics of Acyrthosiphon svalbardicum in Spitsbergen, the main island of the Svalbard archipelago, and compared its genetic structure with that of its close relative Acyrthosiphon brevicorne, sampled in the top of Scandinavian mainland. We found that A. svalbardicum is common but heterogeneously distributed along the west coast of Spitsbergen. We recorded this species up to 79°12', which constitutes the northernmost location for any aphid. Genetic structure examined using microsatellite markers showed more pronounced spatial differentiation in A. svalbardicum than in A. brevicorne populations, presumably due to reduced dispersal capacities in the former species. Although populations of A. brevicorne and A. svalbardicum were well-delineated at nuclear loci, they shared similar cytoplasmic DNA haplotypes as revealed by sequence analysis of two DNA barcodes. These results raise questions about whether these two taxa are different species, and the colonization sources and history of the Svalbard archipelago by A. svalbardicum.

4.
Mol Ecol ; 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30010213

ABSTRACT

Identifying the genomic bases of adaptation to novel environments is a long-term objective in evolutionary biology. Because genetic differentiation is expected to increase between locally adapted populations at the genes targeted by selection, scanning the genome for elevated levels of differentiation is a first step towards deciphering the genomic architecture underlying adaptive divergence. The pea aphid Acyrthosiphon pisum is a model of choice to address this question, as it forms a large complex of plant-specialized races and cryptic species, resulting from recent adaptive radiation. Here, we characterized genomewide polymorphisms in three pea aphid races specialized on alfalfa, clover and pea crops, respectively, which we sequenced in pools (poolseq). Using a model-based approach that explicitly accounts for selection, we identified 392 genomic hotspots of differentiation spanning 47.3 Mb and 2,484 genes (respectively, 9.12% of the genome size and 8.10% of its genes). Most of these highly differentiated regions were located on the autosomes, and overall differentiation was weaker on the X chromosome. Within these hotspots, high levels of absolute divergence between races suggest that these regions experienced less gene flow than the rest of the genome, most likely by contributing to reproductive isolation. Moreover, population-specific analyses showed evidence of selection in every host race, depending on the hotspot considered. These hotspots were significantly enriched for candidate gene categories that control host-plant selection and use. These genes encode 48 salivary proteins, 14 gustatory receptors, 10 odorant receptors, five P450 cytochromes and one chemosensory protein, which represent promising candidates for the genetic basis of host-plant specialization and ecological isolation in the pea aphid complex. Altogether, our findings open new research directions towards functional studies, for validating the role of these genes on adaptive phenotypes.

5.
Genome Biol Evol ; 10(2): 507-520, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29360959

ABSTRACT

The faster evolution of X chromosomes has been documented in several species, and results from the increased efficiency of selection on recessive alleles in hemizygous males and/or from increased drift due to the smaller effective population size of X chromosomes. Aphids are excellent models for evaluating the importance of selection in faster-X evolution because their peculiar life cycle and unusual inheritance of sex chromosomes should generally lead to equivalent effective population sizes for X and autosomes. Because we lack a high-density genetic map for the pea aphid, whose complete genome has been sequenced, we first assigned its entire genome to the X or autosomes based on ratios of sequencing depth in males (X0) to females (XX). Then, we computed nonsynonymous to synonymous substitutions ratios (dN/dS) for the pea aphid gene set and found faster evolution of X-linked genes. Our analyses of substitution rates, together with polymorphism and expression data, showed that relaxed selection is likely to be the greatest contributor to faster-X because a large fraction of X-linked genes are expressed at low rates and thus escape selection. Yet, a minor role for positive selection is also suggested by the difference between substitution rates for X and autosomes for male-biased genes (but not for asexual female-biased genes) and by lower Tajima's D for X-linked compared with autosomal genes with highly male-biased expression patterns. This study highlights the relevance of organisms displaying alternative chromosomal inheritance to the understanding of forces shaping genome evolution.


Subject(s)
Aphids/genetics , Chromosomes, Insect , Evolution, Molecular , X Chromosome/genetics , Animals , Aphids/physiology , Biological Evolution , Female , Gene Expression Profiling , Genes, X-Linked , Genetic Drift , Genome, Insect , Male , Polymorphism, Genetic , Reproduction , Reproduction, Asexual , Sex Chromosomes/genetics
6.
Fungal Genet Biol ; 91: 1-5, 2016 06.
Article in English | MEDLINE | ID: mdl-26964907

ABSTRACT

Aphanomyces euteiches Drechsler is a serious pathogen of leguminous crops that causes devastating root rot of pea worldwide. Given that A. euteiches is a diploid organism, robust, codominant markers are needed for population genetics studies. We have developed and screened a microsatellite-enriched small-insert genomic library for identification of A. euteiches SSR containing sequences. Fourteen out of the 48 primer pairs designed to amplify SSR, produced unambiguous polymorphic products in our test population of 94 isolates. The number of alleles at each locus ranged from one to four. The identification of new markers would enhance the ability to evaluate the genetic structure of A. euteiches populations, and pathogen evolution.


Subject(s)
Aphanomyces/genetics , Microsatellite Repeats/genetics , Pisum sativum/microbiology , Alleles , Aphanomyces/pathogenicity , Chromosome Mapping , Pisum sativum/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/microbiology
7.
PLoS One ; 10(3): e0120664, 2015.
Article in English | MEDLINE | ID: mdl-25807173

ABSTRACT

Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa.


Subject(s)
Aphids/genetics , Animals , Aphids/classification , Aphids/microbiology , Bacteria/isolation & purification , Buchnera/isolation & purification , Cluster Analysis , Erwinia/isolation & purification , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Pantoea/isolation & purification , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, RNA , Symbiosis , Wolbachia/isolation & purification
8.
PLoS Genet ; 10(12): e1004838, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25473828

ABSTRACT

Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼ 300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.


Subject(s)
Aphids/genetics , Gene Transfer, Horizontal , Pisum sativum/parasitology , Reproduction, Asexual/genetics , Animals , Aphids/physiology , Chromosome Mapping , Crosses, Genetic , Female , Genetics, Population , Male , Parthenogenesis/genetics , Quantitative Trait Loci , Reproduction/genetics
9.
PLoS Genet ; 9(8): e1003690, 2013.
Article in English | MEDLINE | ID: mdl-23950732

ABSTRACT

Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.


Subject(s)
Aphids/genetics , Biological Evolution , Sex Chromosomes , X Chromosome/genetics , Alleles , Animals , Aphids/physiology , Female , Genome, Insect , Male , Mutation , Reproduction, Asexual/genetics
10.
Mol Biol Evol ; 29(2): 837-47, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21998277

ABSTRACT

Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.


Subject(s)
Aphids/genetics , Evolution, Molecular , Sex Determination Processes/genetics , X Chromosome/genetics , Animals , Biological Evolution , Female , Genetic Markers , Genetic Variation , Genotype , Male , Microsatellite Repeats/genetics , X Chromosome/physiology
11.
J Virol Methods ; 110(1): 51-60, 2003 Jun 09.
Article in English | MEDLINE | ID: mdl-12757920

ABSTRACT

One of the major factors determining the incidence of Barley yellow dwarf virus (BYDV) on autumn-sown cereals is the viruliferous state of immigrant winged aphids. This variable is assessed routinely using the enzyme-linked immunosorbant assay (ELISA). However, the threshold for virus detection by ELISA can lead to false negative results for aphids carrying less than 10(6) particles. Although molecular detection techniques enabling the detection of lower virus quantities in samples are available, the relatively laborious sample preparation and data analysis have restricted their use in routine applications. A gel-free real-time one-step reverse transcription polymerase chain reaction (RT-PCR) protocol is described for specific detection and quantitation of BYDV-PAV, the most widespread BYDV species in Western Europe. This new assay, based on TaqMan technology, detects and quantifies from 10(2) to 10(8) BYDV-PAV RNA copies. This test is 10 and 10(3) times more sensitive than the standard RT-PCR and ELISA assays published previously for BYDV-PAV detection and significantly improves virus detection in single aphids. Extraction of nucleic acids from aphids using either phenol/chloroform or chelatin resin-based protocols allow the use of pooled samples or of a small part (up to 1/1600th) of a single aphid extract for efficient BYDV-PAV detection.


Subject(s)
Aphids/virology , Hordeum/virology , Luteovirus/isolation & purification , Plant Diseases/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Taq Polymerase/metabolism , Animals , Base Sequence , Enzyme-Linked Immunosorbent Assay , Fluorescent Dyes , Luteovirus/genetics , Molecular Sequence Data , Plant Viruses/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...