Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Biomater ; 11: rbae033, 2024.
Article in English | MEDLINE | ID: mdl-38845855

ABSTRACT

Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.

2.
3D Print Addit Manuf ; 11(2): e813-e827, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38694834

ABSTRACT

Successful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic-co-glycolic acid) particle size and loading concentration on material accuracy, machine precision, and degradation of 3D printed poly(ɛ-caprolactone)-based scaffolds. Using a main effects analysis, the sizes and loading concentrations of particle delivery vehicles investigated were found to have neither a beneficial nor disadvantageous influence on the metrics of printing quality such as material accuracy and machine precision. Meanwhile, particle loading concentration was determined to influence degradation rate, whereas printing temperature affected the trends in composite weight-average molecular weight. Neither of the two particle-related parameters (concentration nor diameter) was found to exhibit a significant effect on intra-fiber nor inter-fiber porosity. These findings evidence the capacity for controlled loading of particulate delivery vehicles in 3D printed scaffolds while preserving construct accuracy and precision, and with predictable dictation of composite degradation behavior for potential controlled release of encapsulated biomolecules.

3.
Clin Cancer Res ; 30(15): 3259-3272, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38775859

ABSTRACT

PURPOSE: The genetic intratumoral heterogeneity observed in human osteosarcomas poses challenges for drug development and the study of cell fate, plasticity, and differentiation, which are processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN: To pinpoint errors in osteosarcoma differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs mesenchymal stem cells toward adipogenic and osteoblastic fates. Incorporating preexisting chondrocyte data, we applied trajectory analysis and non-negative matrix factorization to generate the first human mesenchymal differentiation atlas. RESULTS: This "roadmap" served as a reference to delineate the cellular composition of morphologically complex osteosarcoma tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-sequencing osteosarcoma dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS: Our study quantifies osteosarcoma differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.


Subject(s)
Bone Neoplasms , Cell Differentiation , Mesenchymal Stem Cells , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/genetics , Osteosarcoma/mortality , Humans , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/mortality , Single-Cell Analysis/methods , Transcriptome , Cell Lineage/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Gene Expression Profiling
4.
Acta Biomater ; 178: 83-92, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38387748

ABSTRACT

Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Xenograft Model Antitumor Assays , Bone and Bones/pathology , Bone Neoplasms/therapy , Bone Neoplasms/secondary , Prostatic Neoplasms/pathology , Osteoblasts/pathology
5.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295166

ABSTRACT

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Subject(s)
Prostatic Neoplasms , Male , Humans , Mice , Animals , Molecular Weight , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Tyrosine , Protein Tyrosine Phosphatases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL