Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948857

ABSTRACT

Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter-network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 schizophrenia patients and demographically matched 160 healthy controls. Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available brain networks between SZ patients and healthy controls (HC). These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time-varying connectivity strength across functional regions from each source network, compared to healthy control group. C-means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low-scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large-scale functional entropy correlation. k-means clustering analysis on time-indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that it appears healthy for a brain to primarily circulate through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. However, individuals with SZ seem to struggle with transiently attaining these more focused and structured connectivity patterns. Proposed ICE measure presents a novel framework for gaining deeper insights into understanding mechanisms of healthy and disease brain states and a substantial step forward in the developing advanced methods of diagnostics of mental health conditions.

2.
bioRxiv ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38712056

ABSTRACT

A common analysis approach for resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data involves clustering windowed correlation time-series and assigning time windows to clusters (i.e., states) that can be quantified to summarize aspects of the dFNC dynamics. However, those methods can be dominated by a select few features and obscure key dynamics related to less dominant features. This study presents an iterative feature learning approach to identify a maximally significant and minimally complex subset of dFNC features within the default mode network (DMN) in schizophrenia (SZ). Utilizing dFNC data from individuals with SZ and healthy controls (HC), our approach uncovers a subset of features that has a greater number of dFNC states with disorder-related dynamics than is found when all features are present in the clustering. We find that anterior cingulate cortex/posterior cingulate cortex (ACC/PCC) interactions are consistently related to SZ across the most significant iterations of the feature learning analysis and that individuals with SZ tend to spend more time in states with greater intra-ACC anticorrelation and almost no time in a state of high intra-ACC correlation that HCs periodically enter. Our findings highlight the need for nuanced analyses to reveal disorder-related dynamics and advance our understanding of neuropsychiatric disorders.

3.
bioRxiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562835

ABSTRACT

Deep learning methods are increasingly being applied to raw electroencephalogram (EEG) data. However, if these models are to be used in clinical or research contexts, methods to explain them must be developed, and if these models are to be used in research contexts, methods for combining explanations across large numbers of models must be developed to counteract the inherent randomness of existing training approaches. Model visualization-based explainability methods for EEG involve structuring a model architecture such that its extracted features can be characterized and have the potential to offer highly useful insights into the patterns that they uncover. Nevertheless, model visualization-based explainability methods have been underexplored within the context of multichannel EEG, and methods to combine their explanations across folds have not yet been developed. In this study, we present two novel convolutional neural network-based architectures and apply them for automated major depressive disorder diagnosis. Our models obtain slightly lower classification performance than a baseline architecture. However, across 50 training folds, they find that individuals with MDD exhibit higher ß power, potentially higher δ power, and higher brain-wide correlation that is most strongly represented within the right hemisphere. This study provides multiple key insights into MDD and represents a significant step forward for the domain of explainable deep learning applied to raw EEG. We hope that it will inspire future efforts that will eventually enable the development of explainable EEG deep learning models that can contribute both to clinical care and novel medical research discoveries.

4.
Front Psychiatry ; 15: 1165424, 2024.
Article in English | MEDLINE | ID: mdl-38495909

ABSTRACT

Introduction: Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics and novel summary features. Methods: We apply our framework for schizophrenia (SZ) default mode network analysis. Namely, we extract dFNC from individuals with SZ and controls, identify 5 dFNC states, and characterize the dFNC features most crucial to those states with a new perturbation-based clustering explainability approach. We then extract several features typically used in hard clustering and further present a variety of unique features specially designed for use with fuzzy clustering to quantify state dynamics. We examine differences in those features between individuals with SZ and controls and further search for relationships between those features and SZ symptom severity. Results: Importantly, we find that individuals with SZ spend more time in states of moderate anticorrelation between the anterior and posterior cingulate cortices and strong anticorrelation between the precuneus and anterior cingulate cortex. We further find that individuals with SZ tend to transition more rapidly than controls between low-magnitude and high-magnitude dFNC states. Conclusion: We present a novel dFNC analysis framework and use it to identify effects of SZ upon network dynamics. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.

5.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405889

ABSTRACT

The diagnosis of schizophrenia (SZ) can be challenging due to its diverse symptom presentation. As such, many studies have sought to identify diagnostic biomarkers of SZ using explainable machine learning methods. However, the generalizability of identified biomarkers in many machine learning-based studies is highly questionable given that most studies only analyze explanations from a small number of models. In this study, we present (1) a novel feature interaction-based explainability approach and (2) several new approaches for summarizing multi-model explanations. We implement our approach within the context of electroencephalogram (EEG) spectral power data. We further analyze both training and test set explanations with the goal of extracting generalizable insights from the models. Importantly, our analyses identify effects of SZ upon the α, ß, and θ frequency bands, the left hemisphere of the brain, and interhemispheric interactions across a majority of folds. We hope that our analysis will provide helpful insights into SZ and inspire the development of robust approaches for identifying neuropsychiatric disorder biomarkers from explainable machine learning models.

6.
Article in English | MEDLINE | ID: mdl-38083012

ABSTRACT

Identifying subtypes of neuropsychiatric disorders based on characteristics of their brain activity has tremendous potential to contribute to a better understanding of those disorders and to the development of new diagnostic and personalized treatment approaches. Many studies focused on neuropsychiatric disorders examine the interaction of brain networks over time using dynamic functional network connectivity (dFNC) extracted from resting-state functional magnetic resonance imaging data. Some of these studies involve the use of either deep learning classifiers or traditional clustering approaches, but usually not both. In this study, we present a novel approach for subtyping individuals with neuropsychiatric disorders within the context of schizophrenia (SZ). We trained an explainable deep learning classifier to differentiate between dFNC data from individuals with SZ and controls, obtaining a test accuracy of 79%. We next used cross-validation to obtain robust average explanations for SZ training participants across folds, identifying 5 SZ subtypes that each differed from controls in a distinct manner and that had different degrees of symptom severity. These subtypes specifically differed from one another in their interactions between the visual network and the subcortical, sensorimotor, and auditory networks and between the cerebellar network and the cognitive control and subcortical networks. Additionally, we uncovered statistically significant differences in negative symptom scores between the subtypes. It is our hope that the proposed novel subtyping approach will contribute to the improved understanding and characterization of SZ and other neuropsychiatric disorders.


Subject(s)
Deep Learning , Schizophrenia , Humans , Magnetic Resonance Imaging/methods , Brain , Brain Mapping/methods , Schizophrenia/diagnosis
7.
Article in English | MEDLINE | ID: mdl-38083298

ABSTRACT

While analysis of temporal signal fluctuations has long been a fixture of blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) research, the role of spatially localized directional diffusion in both signal propagation and emergent large-scale functional integration remains almost entirely neglected. We are proposing an extensible framework to capture and analyze spatially localized fMRI directional signal flow dynamics. The approach is validated in a large resting-state fMRI schizophrenia study where it uncovers significant and novel relationships between hyperlocal spatial dynamics and subject diagnostic status.


Subject(s)
Magnetic Resonance Imaging , Schizophrenia , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Schizophrenia/diagnostic imaging , Rest , Brain/diagnostic imaging
8.
Article in English | MEDLINE | ID: mdl-38083353

ABSTRACT

Resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) analysis has illuminated brain network interactions across many neuropsychiatric disorders. A common analysis approach involves using hard clustering methods to identify transitory states of brain activity, and in response to this, other methods have been developed to quantify the importance of specific dFNC interactions to identified states. Some of these methods involve perturbing individual features and examining the number of samples that switch states. However, only a minority of samples switch states. As such, these methods actually identify the importance of dFNC features to the clustering of a subset of samples rather than the overall clustering. In this study, we present a novel approach that more capably identifies the importance of each feature to the overall clustering. Our approach uses fuzzy clustering to output probabilities of each sample belonging to states and then measures their Kullback-Leibler divergence after perturbation. We show the viability of our approach in the context of schizophrenia (SZ) default mode network analysis, identifying significant differences in state dynamics between individuals with SZ and healthy controls. We further compare our approach with an existing approach, showing that it captures the effects of perturbation upon most samples. We also find that interactions between the posterior cingulate cortex (PCC) and the anterior cingulate cortex and the PCC and precuneus are important across methods. We expect that our novel explainable clustering approach will enable further progress in rs-fMRI analysis and to other clustering applications.


Subject(s)
Magnetic Resonance Imaging , Schizophrenia , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Brain/diagnostic imaging , Schizophrenia/diagnostic imaging , Cluster Analysis
9.
Article in English | MEDLINE | ID: mdl-38083554

ABSTRACT

Machine learning methods have frequently been applied to electroencephalography (EEG) data. However, while supervised EEG classification is well-developed, relatively few studies have clustered EEG, which is problematic given the potential for clustering EEG to identify novel subtypes or patterns of dynamics that could improve our understanding of neuropsychiatric disorders. There are established methods for clustering EEG using manually extracted features that reduce the richness of the feature space for clustering, but only a couple studies have sought to use deep learning-based approaches with automated feature learning to cluster EEG. Those studies involve separately training an autoencoder and then performing clustering on the extracted features, and the separation of those steps can lead to poor quality clustering. In this study, we propose an explainable convolutional autoencoder-based approach that combines model training with clustering to yield high quality clusters. We apply the approach within the context of schizophrenia (SZ), identifying 8 EEG states characterized by varying levels of δ activity. We also find that individuals who spend more time outside of the dominant state tend to have increased negative symptom severity. Our approach represents a significant step forward for clustering resting-state EEG data and has the potential to lead to novel findings across a variety of neurological and neuropsychological disorders in future years.


Subject(s)
Electroencephalography , Schizophrenia , Humans , Electroencephalography/methods , Machine Learning , Cluster Analysis , Schizophrenia/diagnosis
10.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014293

ABSTRACT

Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of applying representations learned from large datasets with a lower sampling rate to smaller datasets with higher sampling rates remains relatively unexplored. In this study, we transfer representations learned by a convolutional neural network on a large, publicly available sleep dataset with a 100 Hertz sampling rate to a major depressive disorder (MDD) diagnosis task at a sampling rate of 200 Hertz. Importantly, we find that the early convolutional layers contain representations that are generalizable across tasks. Moreover, our approach significantly increases mean model accuracy from 82.33% to 86.99%, increases the model's use of lower frequencies, (θ-band), and increases its robustness to channel loss. We expect this analysis to provide useful guidance and enable more widespread use of transfer learning in EEG deep learning studies.

11.
bioRxiv ; 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37873255

ABSTRACT

As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to manually engineered features, there are fewer methods for developing deep learning models on small raw EEG datasets. One potential approach for enhancing deep learning performance, in this case, is the use of transfer learning. While a number of studies have presented transfer learning approaches for manually engineered EEG features, relatively few approaches have been developed for raw resting-state EEG. In this study, we propose a novel EEG transfer learning approach wherein we first train a model on a large publicly available single-channel sleep stage classification dataset. We then use the learned representations to develop a classifier for automated major depressive disorder diagnosis with raw multichannel EEG. Statistical testing reveals that our approach significantly improves the performance of our model (p < 0.05), and we also find that the performance of our approach exceeds that of many previous studies using both engineered features and raw EEG. We further examine how transfer learning affected the representations learned by the model through a pair of explainability analyses, identifying key frequency bands and channels utilized across models. Our proposed approach represents a significant step forward for the domain of raw resting-state EEG classification and has broader implications for use with other electrophysiology and time-series modalities. Importantly, it has the potential to expand the use of deep learning methods across a greater variety of raw EEG datasets and lead to the development of more reliable EEG classifiers.

12.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398050

ABSTRACT

As the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to extracted features, there are fewer methods for developing deep learning models on small raw EEG datasets. One potential approach for enhancing deep learning performance in this case is the use of transfer learning. In this study, we propose a novel EEG transfer learning approach wherein we first train a model on a large publicly available sleep stage classification dataset. We then use the learned representations to develop a classifier for automated major depressive disorder diagnosis with raw multichannel EEG. We find that our approach improves model performance, and we further examine how transfer learning affected the representations learned by the model through a pair of explainability analyses. Our proposed approach represents a significant step forward for the domain raw resting-state EEG classification. Furthermore, it has the potential to expand the use of deep learning methods across more raw EEG datasets and lead to the development of more reliable EEG classifiers.

13.
bioRxiv ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37398173

ABSTRACT

Schizophrenia (SZ) is a neuropsychiatric disorder that affects millions globally. Current diagnosis of SZ is symptom-based, which poses difficulty due to the variability of symptoms across patients. To this end, many recent studies have developed deep learning methods for automated diagnosis of SZ, especially using raw EEG, which provides high temporal precision. For such methods to be productionized, they must be both explainable and robust. Explainable models are essential to identify biomarkers of SZ, and robust models are critical to learn generalizable patterns, especially amidst changes in the implementation environment. One common example is channel loss during EEG recording, which could be detrimental to classifier performance. In this study, we developed a novel channel dropout (CD) approach to increase the robustness of explainable deep learning models trained on EEG data for SZ diagnosis to channel loss. We developed a baseline convolutional neural network (CNN) architecture and implement our approach as a CD layer added to the baseline (CNN-CD). We then applied two explainability approaches to both models for insight into learned spatial and spectral features and show that the application of CD decreases model sensitivity to channel loss. The CNN and CNN-CD achieved accuracies of 81.9% and 80.9% on testing data, respectively. Furthermore, our models heavily prioritized the parietal electrodes and the α-band, which is supported by existing literature. It is our hope that this study motivates the further development of explainable and robust models and bridges the transition from research to application in a clinical decision support role.

14.
Comput Biol Med ; 161: 107005, 2023 07.
Article in English | MEDLINE | ID: mdl-37211004

ABSTRACT

Alzheimer's Disease (AZD) is a neurodegenerative disease for which there is now no known effective treatment. Mild cognitive impairment (MCI) is considered a precursor to AZD and affects cognitive abilities. Patients with MCI have the potential to recover cognitive health, can remain mildly cognitively impaired indefinitely or eventually progress to AZD. Identifying imaging-based predictive biomarkers for disease progression in patients presenting with evidence of very mild/questionable MCI (qMCI) can play an important role in triggering early dementia intervention. Dynamic functional network connectivity (dFNC) estimated from resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly studied in brain disorder diseases. In this work, employing a recent developed a time-attention long short-term memory (TA-LSTM) network to classify multivariate time series data. A gradient-based interpretation framework, transiently-realized event classifier activation map (TEAM) is introduced to localize the group-defining "activated" time intervals over the full time series and generate the class difference map. To test the trustworthiness of TEAM, we did a simulation study to validate the model interpretative power of TEAM. We then applied this simulation-validated framework to a well-trained TA-LSTM model which predicts the progression or recovery from questionable/mild cognitive impairment (qMCI) subjects after three years from windowless wavelet-based dFNC (WWdFNC). The FNC class difference map points to potentially important predictive dynamic biomarkers. Moreover, the more highly time-solved dFNC (WWdFNC) achieves better performance in both TA-LSTM and a multivariate CNN model than dFNC based on windowed correlations between timeseries, suggesting that better temporally resolved measures can enhance the model's performance.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Biomarkers
15.
Article in English | MEDLINE | ID: mdl-37035832

ABSTRACT

The field of neuroimaging has increasingly sought to develop artificial intelligence-based models for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support. However, if these models are to be implemented in a clinical setting, transparency will be vital. Two aspects of transparency are (1) confidence estimation and (2) explainability. Confidence estimation approaches indicate confidence in individual predictions. Explainability methods give insight into the importance of features to model predictions. In this study, we integrate confidence estimation and explainability approaches for the first time. We demonstrate their viability for schizophrenia diagnosis using resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) data. We compare two confidence estimation approaches: Monte Carlo dropout (MCD) and MC batch normalization (MCBN). We combine them with two gradient-based explainability approaches, saliency and layer-wise relevance propagation (LRP), and examine their effects upon explanations. We find that MCD often adversely affects model gradients, making it ill-suited for integration with gradient-based explainability methods. In contrast, MCBN does not affect model gradients. Additionally, we find many participant-level differences between regular explanations and the distributions of explanations for combined explainability and confidence estimation approaches. This suggests that a similar confidence estimation approach used in a clinical context with explanations only output for the regular model would likely not yield adequate explanations. We hope that our findings will provide a starting point for the integration of the two fields, provide useful guidance for future studies, and accelerate the development of transparent neuroimaging clinical decision support systems.

16.
Front Neuroinform ; 17: 1123376, 2023.
Article in English | MEDLINE | ID: mdl-37006636

ABSTRACT

Introduction: Multimodal classification is increasingly common in electrophysiology studies. Many studies use deep learning classifiers with raw time-series data, which makes explainability difficult, and has resulted in relatively few studies applying explainability methods. This is concerning because explainability is vital to the development and implementation of clinical classifiers. As such, new multimodal explainability methods are needed. Methods: In this study, we train a convolutional neural network for automated sleep stage classification with electroencephalogram (EEG), electrooculogram, and electromyogram data. We then present a global explainability approach that is uniquely adapted for electrophysiology analysis and compare it to an existing approach. We present the first two local multimodal explainability approaches. We look for subject-level differences in the local explanations that are obscured by global methods and look for relationships between the explanations and clinical and demographic variables in a novel analysis. Results: We find a high level of agreement between methods. We find that EEG is globally the most important modality for most sleep stages and that subject-level differences in importance arise in local explanations that are not captured in global explanations. We further show that sex, followed by medication and age, had significant effects upon the patterns learned by the classifier. Discussion: Our novel methods enhance explainability for the growing field of multimodal electrophysiology classification, provide avenues for the advancement of personalized medicine, yield unique insights into the effects of demographic and clinical variables upon classifiers, and help pave the way for the implementation of multimodal electrophysiology clinical classifiers.

17.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909628

ABSTRACT

The application of deep learning classifiers to resting-state electroencephalography (rs-EEG) data has become increasingly common. However, relative to studies using traditional machine learning methods and extracted features, deep learning methods are less explainable. A growing number of studies have presented explainability approaches for rs-EEG deep learning classifiers. However, to our knowledge, no approaches give insight into spatio-spectral interactions (i.e., how spectral activity in one channel may interact with activity in other channels). In this study, we combine gradient and perturbation-based explainability approaches to give insight into spatio-spectral interactions in rs-EEG deep learning classifiers for the first time. We present the approach within the context of major depressive disorder (MDD) diagnosis identifying differences in frontal δ activity and reduced interactions between frontal electrodes and other electrodes. Our approach provides novel insights and represents a significant step forward for the field of explainable EEG classification.

18.
Neuroimage Clin ; 37: 103363, 2023.
Article in English | MEDLINE | ID: mdl-36871405

ABSTRACT

Apolipoprotein E (APOE) polymorphic alleles are genetic factors associated with Alzheimer's disease (AD) risk. Although previous studies have explored the link between AD genetic risk and static functional network connectivity (sFNC), to the best of our knowledge, no previous studies have evaluated the association between dynamic FNC (dFNC) and AD genetic risk. Here, we examined the link between sFNC, dFNC, and AD genetic risk with a data-driven approach. We used rs-fMRI, demographic, and APOE data from cognitively normal individuals (N = 886) between 42 and 95 years of age (mean = 70 years). We separated individuals into low, moderate, and high-risk groups. Using Pearson correlation, we calculated sFNC across seven brain networks. We also calculated dFNC with a sliding window and Pearson correlation. The dFNC windows were partitioned into three distinct states with k-means clustering. Next, we calculated the proportion of time each subject spent in each state, called occupancy rate or OCR and frequency of visits. We compared both sFNC and dFNC features across individuals with different genetic risks and found that both sFNC and dFNC are related to AD genetic risk. We found that higher AD risk reduces within-visual sensory network (VSN) sFNC and that individuals with higher AD risk spend more time in a state with lower within-VSN dFNC. We also found that AD genetic risk affects whole-brain sFNC and dFNC in women but not men. In conclusion, we presented novel insights into the links between sFNC, dFNC, and AD genetic risk.


Subject(s)
Alzheimer Disease , Aged , Female , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Male
19.
bioRxiv ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824777

ABSTRACT

Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics. We apply our framework for schizophrenia (SZ) default mode network analysis, identifying 5 states and characterizing those states with a new explainability approach. While also showing that features typically used in hard clustering can be extracted in our framework, we present a variety of unique features to quantify state dynamics and identify effects of SZ upon network dynamics. We further uncover relationships between symptom severity and interactions of the precuneus with the anterior and posterior cingulate cortex. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.

20.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778353

ABSTRACT

Resting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) analysis has illuminated brain network interactions across many neuropsychiatric disorders. A common analysis approach involves using hard clustering methods to identify transitory states of brain activity, and in response to this, other methods have been developed to quantify the importance of specific dFNC interactions to identified states. Some of these methods involve perturbing individual features and examining the number of samples that switch states. However, only a minority of samples switch states. As such, these methods actually identify the importance of dFNC features to the clustering of a subset of samples rather than the overall clustering. In this study, we present a novel approach that more capably identifies the importance of each feature to the overall clustering. Our approach uses fuzzy clustering to output probabilities of each sample belonging to states and then measures their Kullback-Leibler divergence after perturbation. We show the viability of our approach in the context of schizophrenia (SZ) default mode network analysis, identifying significant differences in state dynamics between individuals with SZ and healthy controls. We further compare our approach with an existing approach, showing that it captures the effects of perturbation upon most samples. We also find that interactions between the posterior cingulate cortex (PCC) and the anterior cingulate cortex and the PCC and precuneus are important across methods. We expect that our novel explainable clustering approach will enable further progress in rs-fMRI analysis and to other clustering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...