Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Neuroinflammation ; 20(1): 256, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37941008

BACKGROUND: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS: We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS: Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS: Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.


Axon Guidance , Brain Injuries , Mice , Animals , c-Mer Tyrosine Kinase/metabolism , Apoptosis , Phagocytosis/physiology , Mice, Knockout , RNA, Messenger , STAT6 Transcription Factor/metabolism
2.
Proc Natl Acad Sci U S A ; 120(41): e2204700120, 2023 10 10.
Article En | MEDLINE | ID: mdl-37796990

Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.


Blood-Brain Barrier , Brain Injuries, Traumatic , Receptor, EphA4 , Animals , Mice , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Mice, Knockout , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Receptor, EphA4/genetics , Receptor, EphA4/metabolism
3.
Res Sq ; 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37461720

Background: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation and prevents the release of inflammatory molecules and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remains ill-defined. Methods: We demonstrate using GFP bone marrow chimeric knockout (KO) mice, that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing Mertk signaling in the brain to restrict the function of efferocytosis on resident microglia and peripheral-derived monocyte/macrophages. Results: Single-cell RNAseq identified Mertk expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis, and overall protein expression of p-Mertk, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with Mertk-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Select inhibitors of ERK and Stat6 attenuated this effect confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. Conclusions: Our findings implicate the Mertk/ERK/Stat6 axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.

4.
Cells ; 11(21)2022 10 25.
Article En | MEDLINE | ID: mdl-36359758

Neurological disorders are highly prevalent and often lead to chronic debilitating disease. Neuroinflammation is a major driver across the spectrum of disorders, and microglia are key mediators of this response, gaining wide acceptance as a druggable cell target. Moreover, clinical providers have limited ability to objectively quantify patient-specific changes in microglia status, which can be a predictor of illness and recovery. This necessitates the development of diagnostic biomarkers and imaging techniques to monitor microglia-mediated neuroinflammation in coordination with neurological outcomes. New insights into the polarization status of microglia have shed light on the regulation of disease progression and helped identify a modifiable target for therapeutics. Thus, the detection and monitoring of microglia activation through the inclusion of diagnostic biomarkers and imaging techniques will provide clinical tools to aid our understanding of the neurologic sequelae and improve long-term clinical care for patients. Recent achievements demonstrated by pre-clinical studies, using novel depletion and cell-targeted approaches as well as single-cell RNAseq, underscore the mechanistic players that coordinate microglial activation status and offer a future avenue for therapeutic intervention.


Microglia , Nervous System Diseases , Animals , Mice , Humans , Microglia/physiology , Mice, Inbred C57BL , Myeloid Cells , Biomarkers
5.
Front Mol Neurosci ; 14: 747770, 2021.
Article En | MEDLINE | ID: mdl-34630039

Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.

...