Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
J Comp Physiol B ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758303

ABSTRACT

In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.

2.
Exp Physiol ; 109(7): 1051-1065, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38502538

ABSTRACT

Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.


Subject(s)
Diving , Respiration , Animals , Diving/physiology , Humans , Semantics , Bradycardia/physiopathology , Cardiovascular Physiological Phenomena , Respiratory Mechanics/physiology
3.
Article in English | MEDLINE | ID: mdl-37989399

ABSTRACT

Arterial pressure (Pa) regulation is essential to adequately distribute nutrients to metabolizing tissues, remove wastes and avoid lesions associated with hypertension. In vertebrates, short-term Pa regulation is achieved through the baroreflex, which elicits inversely proportional changes in heart rate (fH) and vascular resistance to restore Pa. The cardiac limb of this reflex has been reported in all vertebrate groups studied to date: teleosts, amphibians, snakes, lizards, crocodiles, birds and mammals - which led to the suggestion that the baroreflex is an ancient trait present in all vertebrate species. However, it is not clear whether more basal groups of vertebrates, such as cyclostomes, elasmobranchs and chondrosteans, manifest baroreflex regulation of fH. Thus, the aim of this study was to determine whether the white sturgeon (Acipenser transmontanus; Chondrostei: Acipenseridae) exhibits a cardiac baroreflex. To do so, we induced Pa perturbations through injections of phenylephrine, sodium nitroprusside (SNP) and saline solution (hypervolemia), and examined possible fH baroreflex responses. We also investigated whether fH responses triggered by fright and chemoreflex were present in this species, in order to confirm the potential of sturgeon to perform reflexive cardiac adjustments. The findings indicate that A. transmontanus exhibits reflex bradycardia in response to fright and chemoreceptor stimulation, illustrating its capacity for short-term cardiac regulation. However, this species does not display baroreflex control of fH across its physiological range. This dissociation suggests that while the nervous and cardiovascular systems of A. transmontanus are primed for rapid reflex responses, a cardiac baroreflex mechanism remains absent.


Subject(s)
Baroreflex , Cardiovascular System , Animals , Blood Pressure/physiology , Baroreflex/physiology , Reflex , Bradycardia , Phenylephrine/pharmacology , Heart Rate/physiology , Nitroprusside/pharmacology , Mammals
4.
Gen Comp Endocrinol ; 339: 114294, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37120097

ABSTRACT

Hypoxemia from exposure to intermittent and/or acute environmental hypoxia (lower oxygen concentration) is a severe stressor for many animal species. The response to hypoxia of the hypothalamic-pituitary-adrenal axis (HPA-axis), which culminates in the release of glucocorticoids, has been well-studied in hypoxia-intolerant surface-dwelling mammals. Several group-living (social) subterranean species, including most African mole-rats, are hypoxia-tolerant, likely due to regular exposure to intermittent hypoxia in their underground burrows. Conversely, solitary mole-rat species, lack many adaptive mechanisms, making them less hypoxia-tolerant than the social genera. To date, the release of glucocorticoids in response to hypoxia has not been measured in hypoxia-tolerant mammalian species. Consequently, this study exposed three social African mole-rat species and two solitary mole-rat species to normoxia, or acute hypoxia and then measured their respective plasma glucocorticoid (cortisol) concentrations. Social mole-rats had lower plasma cortisol concentrations under normoxia than the solitary genera. Furthermore, individuals of all three of the social mole-rat species exhibited significantly increased plasma cortisol concentrations after hypoxia, similar to those of hypoxia-intolerant surface-dwelling species. By contrast, individuals of the two solitary species had a reduced plasma cortisol response to acute hypoxia, possibly due to increased plasma cortisol under normoxia. If placed in perspective with other closely related surface-dwelling species, the regular exposure of the social African mole-rats to hypoxia may have reduced the basal levels of the components for the adaptive mechanisms associated with hypoxia exposure, including circulating cortisol levels. Similarly, the influence of body mass on plasma cortisol levels cannot be ignored. This study demonstrates that both hypoxia-tolerant rodents and hypoxia-intolerant terrestrial laboratory-bred rodents may possess similar HPA-axis responses from exposure to hypoxia. Further research is required to confirm the results from this pilot study and to further confirm how the cortisol concentrations may influence responses to hypoxia in African mole-rats.


Subject(s)
Hydrocortisone , Hypothalamo-Hypophyseal System , Animals , Pilot Projects , Pituitary-Adrenal System , Hypoxia , Mole Rats/physiology , Glucocorticoids
5.
Wilderness Environ Med ; 34(1): 55-62, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36710126

ABSTRACT

INTRODUCTION: Little is known about the epidemiology of emergency medical search and rescue incidents globally. The purpose of this study was to describe the epidemiology of emergency medical search and rescue incidents in the North Shore Mountains of Vancouver, British Columbia, Canada. METHODS: This was a retrospective review and descriptive analysis of search and rescue incident reports created by North Shore Rescue over a 25 y period from 1995 to 2019, inclusive. Incident reports were screened for inclusion against a priori criteria defining a medical callout. The National Advisory Committee of Aeronautics (NACA) severity score was used as a method to grade medical acuity of included subjects. RESULTS: We included 906 subjects. Their median age was 35 y (interquartile range, 24-53), and 65% of subjects were men. Forty-one percent (n=371) of subjects were classified as non-trauma and 54% (n=489) as trauma. The top 3 activities were hiking (53%), biking (10%), and snow sports (10%). Forty-nine percent of incidents were classified as having a NACA score of ≥3. For subjects with trauma, the top 3 body regions were lower limb (52%), head (18%), and torso (12%). For subjects with non-traumatic conditions, the top 3 causes were mental health crises (25%), exposure (25%), and cardiovascular incidents (11%). CONCLUSIONS: Half of the incidents were serious enough to require medical assessment at a hospital (NACA score ≥3). Given this medical acuity, there is a need for evidence-based guidelines and core training competencies for mountain medical search and rescue. Standardized core data sets and outcomes are needed to monitor quality of care over time.


Subject(s)
Emergency Medical Services , Mountaineering , Sports , Male , Humans , Adult , Female , Rescue Work , Mountaineering/injuries , British Columbia/epidemiology , Retrospective Studies
6.
Compr Physiol ; 12(4): 3869-3988, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35997081

ABSTRACT

The ectothermic vertebrates are a diverse group that includes the Fishes (Agnatha, Chondrichthyes, and Osteichthyes), and the stem Tetrapods (Amphibians and Reptiles). From an evolutionary perspective, it is within this group that we see the origin of air-breathing and the transition from the use of water to air as a respiratory medium. This is accompanied by a switch from gills to lungs as the major respiratory organ and from oxygen to carbon dioxide as the primary respiratory stimulant. This transition first required the evolution of bimodal breathing (gas exchange with both water and air), the differential regulation of O2 and CO2 at multiple sites, periodic or intermittent ventilation, and unsteady states with wide oscillations in arterial blood gases. It also required changes in respiratory pump muscles (from buccopharyngeal muscles innervated by cranial nerves to axial muscles innervated by spinal nerves). The question of the extent to which common mechanisms of respiratory control accompany this progression is an intriguing one. While the ventilatory control systems seen in all extant vertebrates have been derived from common ancestors, the trends seen in respiratory control in the living members of each vertebrate class reflect both shared-derived features (ancestral traits) as well as unique specializations. In this overview article, we provide a comprehensive survey of the diversity that is seen in the afferent inputs (chemo and mechanoreceptor), the central respiratory rhythm generators, and the efferent outputs (drive to the respiratory pumps and valves) in this group. © 2022 American Physiological Society. Compr Physiol 12: 1-120, 2022.


Subject(s)
Respiration , Vertebrates , Animals , Vertebrates/physiology
7.
Front Physiol ; 13: 885295, 2022.
Article in English | MEDLINE | ID: mdl-36035495

ABSTRACT

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

8.
Physiol Biochem Zool ; 95(4): 288-301, 2022.
Article in English | MEDLINE | ID: mdl-35588474

ABSTRACT

AbstractMammals entering hibernation undergo drastic reductions in metabolic rate and body temperature (Tb; to as low as ∼2% of euthermic metabolic rate and 1°C to -2°C). Although ventilation (V˙E) is also greatly reduced in hibernating ground squirrels, their relative ventilatory response (%ΔV˙E) to increases in inspired CO2 (∼400% increase to 7% CO2) dwarfs that of euthermic squirrels (∼60% increase). On the basis of data from earlier studies on hypothermic animals, we hypothesized that this switch in apparent ventilatory sensitivity was the result of the change in state (from euthermic to hibernating) and not due to the change in core Tb. Thus, we used whole-body plethysmography to assess the hypercapnic ventilatory response (HCVR) in thirteen-lined ground squirrels in steady-state hibernation at 20°C, 15°C, 10°C, 7°C, and 5°C. With the transition into hibernation as Tb fell, the breathing pattern became irregular and then episodic. Total V˙E and the oxygen consumption rate (V˙O2) decreased progressively as Tb fell. Hibernating squirrels with a core Tb of 20°C increased V˙E by 150% from normocapnic levels when given 7% CO2 to breathe, while squirrels with a Tb of 7°C increased V˙E by 650% when exposed to the same inspired CO2. When Tb was cooled from 7°C to 5°C, however, the increase in the HCVR fell to 450% and was associated with a rise in V˙O2 and total V˙E. These results reveal progressive changes in breathing pattern and the HCVR with decreasing Tb and suggest that the effects of hibernation state may be Tb dependent. V˙E did not fall in proportion to metabolic rate, and the HCVR increased progressively in both absolute terms and relative terms until a Tb of 7°C, both of which potentially constrain the extent of the metabolic suppression.


Subject(s)
Hibernation , Animals , Carbon Dioxide/metabolism , Hibernation/physiology , Respiration , Sciuridae/physiology , Temperature
9.
J Comp Physiol B ; 192(2): 361-378, 2022 03.
Article in English | MEDLINE | ID: mdl-34739575

ABSTRACT

At the onset of entrance into hibernation in many mammals, there is a reduction in the respiratory exchange ratio (RER) thought to result in a retention of CO2 that contributes to the ensuing metabolic suppression. In steady-state hibernation, the relative hypercapnic ventilatory response (HCVR; the % change in ventilation to CO2 exposure) is elevated. These two observations, paradoxically, suggest a transient decrease in CO2 sensitivity at the onset of entrance into hibernation, allowing the retention of CO2, then a subsequent increase in CO2 sensitivity giving rise to the elevated HCVR in steady-state hibernation. We examined the time course of the changes in ventilation, O2 consumption rates ([Formula: see text]o2), CO2 excretion rates, body temperature, and hence the RER and ACR (air convection ratio, ventilation/[Formula: see text]o2) and the HCVR throughout entrance and arousal into and out of hibernation in 13-lined ground squirrels to confirm this. We observed a significant drop (entrance) and rise (arousal) in the RER produced by hypo- and hyperventilation, respectively. CO2 chemo-sensitivity while the RER was reduced on entrance was blunted and rose late in entrance. On arousal, CO2 chemo-sensitivity was elevated when the RER was elevated and fell immediately after RER returned to normal values. At any given Tb, the HCVR was lower during entrance compared to arousal producing a significant hysteresis. The HCVR, however, was the same at any given [Formula: see text]o2 during entrance and arousal. These data suggest that both the changes in [Formula: see text]o2 and in the HCVR are associated with changes in central regulation of the effector limbs establishing steady-state hibernation.


Subject(s)
Hibernation , Animals , Arousal , Carbon Dioxide/metabolism , Hypercapnia , Sciuridae/physiology
10.
J Comp Physiol B ; 191(6): 983-994, 2021 11.
Article in English | MEDLINE | ID: mdl-34459965

ABSTRACT

Over the past decade, Peter Frappell, aka Frapps, has been an integral part of an international group studying birds that migrate or reside at altitude. This research has taken the extended group from Terkhiin Tsagaan Lake on the Mongolian plateau to Chilika Lake in eastern India, Koonthankulum bird sanctuary in southern India, Lake Qinghai in Chinese Tibet, Summer Lake Wildlife and Malheur National Wildlife Refuge in Oregon, and San Pedro a Marca, Vichaycocha and Lake Titicaca National Reserve in Perú. It has been a productive project producing over 30 manuscripts, 15 of which were based on research in the field. What has not been published are the stories behind the research and the critical lessons learned along the way. Some of these are chronicled here.


Subject(s)
Altitude , Birds , Animals , Animals, Wild , Lakes , Seasons
11.
J Comp Physiol B ; 191(6): 973-978, 2021 11.
Article in English | MEDLINE | ID: mdl-34463812

ABSTRACT

This collection of research articles was put together in honour of respiratory physiologist Professor Peter Frappell's (Frapps's) academic achievements. It encompasses various topics relating to the oxygen transport cascade, which was central to Frapps' career as a comparative physiologist. This issue highlights the diversity and outreach of his influence on the field and his pioneering spirit; promoting novel perspectives, methodologies and research techniques. This issue also demonstrates how Frapps' knowledge and scientific findings answered some of the fundamental questions within the field of respiratory physiology while creating and fostering a rather unique work atmosphere in the laboratories he led. We thank Frapps for the contributions he has made and the friendships he has nurtured over his career. Cheers, Frapps - we love you mate!


Subject(s)
Oxygen , Respiratory Physiological Phenomena , History, 20th Century , History, 21st Century , Humans , Male
12.
Front Physiol ; 12: 626470, 2021.
Article in English | MEDLINE | ID: mdl-33927636

ABSTRACT

The pre-Bötzinger complex (preBötC) of the ventral medulla generates the mammalian inspiratory breathing rhythm. When isolated in explants and deprived of synaptic inhibition, the preBötC continues to generate inspiratory-related rhythm. Mechanisms underlying burst generation have been investigated for decades, but cellular and synaptic mechanisms responsible for burst termination have received less attention. KCNQ-mediated K+ currents contribute to burst termination in other systems, and their transcripts are expressed in preBötC neurons. Therefore, we tested the hypothesis that KCNQ channels also contribute to burst termination in the preBötC. We recorded KCNQ-like currents in preBötC inspiratory neurons in neonatal rat slices that retain respiratory rhythmicity. Blocking KCNQ channels with XE991 or linopirdine (applied via superfusion or locally) increased inspiratory burst duration by 2- to 3-fold. By contrast, activation of KCNQ with retigabine decreased inspiratory burst duration by ~35%. These data from reduced preparations suggest that the KCNQ current in preBötC neurons contributes to inspiratory burst termination.

13.
J Exp Zool A Ecol Integr Physiol ; 335(9-10): 820-830, 2021 11.
Article in English | MEDLINE | ID: mdl-33773086

ABSTRACT

We investigated the extent to which the facultative air-breathing fish, the striped catfish (Pangasianodon hypophthalmus), uses air-breathing to cope with aquatic hypercarbia, and how air-breathing is influenced by the experimental exposure protocol and level of hypercarbia. We exposed individuals to severe aquatic hypercarbia (up to Pw CO2 = 81 mmHg) using step-wise and progressive exposure protocols while measuring gill ventilation rate, heart rate, mean arterial blood pressure, and air-breathing frequency, as well as arterial blood pH and PCO2 . We confirm that P. hypophthalmus is tolerant of hypercarbia. Under both protocols gill ventilation rate, heart rate, and mean arterial blood pressure were maintained near control levels even at very high CO2 levels. We observed a marked amount of individual variation in the PwCO2 at which air-breathing was elicited, with some individuals not responding at all. The experimental protocol also influenced the onset of air-breathing. Air-breathing began at lower Pw CO2 in the step-wise protocol (23 ± 4.1 mmHg) compared with the progressive protocol (46 ± 7.8 mmHg). Air-breathing was often followed by aquatic surface respiration, at higher PCO2 (71 ± 5.2 mmHg) levels. On average, the blood PCO2 was approximately 43% lower (46 ± 2.5 mmHg) than water Pw CO2 (~81 mmHg) at our highest tested CO2 level. While this suggests that aerial CO2 elimination is an effective, and perhaps critical, respiratory strategy used by P. hypophthalmus to cope with severe hypercarbia, this observation may also be explained by a long lag time required for equilibration.


Subject(s)
Catfishes , Animals , Gills , Heart Rate , Respiration
14.
Exp Physiol ; 106(4): 1005-1023, 2021 04.
Article in English | MEDLINE | ID: mdl-33608952

ABSTRACT

NEW FINDINGS: What is the central question of this study? Adult homeotherms and heterotherms differ in cold and hypoxia tolerance and in how they match O2 supply and demand in response to these stressors. It has never been ascertained whether these differences reflect different developmental trajectories or whether they are already present at birth. What is the main finding and its importance? When exposed to cold and hypoxia, newborn rodents differed in how they matched O2 supply and demand, with responses reflecting the degree of heterothermic expression and tolerance. Our findings indicate that elements of the adult phenotype are already present at birth. ABSTRACT: There are physiological differences in how adult rodents regulate O2 supply and O2 demand when exposed to hypoxia in the cold. We examined whether these differences reflect divergent developmental trajectories of homeotherms and heterotherms or whether the differences are already present at birth. We exposed newborn rodents (0-4 days old) that ranged in heterothermic expression [a homeotherm, the rat (Rattus norvegicus); two facultative heterotherms, the mouse (Mus musculus) and the hamster (Mesocricetus auratus); and an obligate heterotherm, the ground squirrel (Ictidomys tridecemlineatus)] to either normoxia (21% O2 ) or hypoxia (7% O2 ) and measured their metabolic, thermoregulatory and ventilatory responses while progressively reducing the ambient temperature from 33 to 15°C. All newborns reduced their body temperature, O2 consumption rate and ventilation during progressive cooling, both in normoxia and in hypoxia. When progressively cooled in hypoxia, however, the homeothermic rats exhibited the greatest thermogenic response, depressed their O2 consumption rate the least and increased ventilation the most. In contrast, the obligate heterotherm, the ground squirrel, did not mount a thermogenic response, exhibited the greatest reduction in O2 consumption rate and increased O2 uptake not by increasing ventilation like the rat, but by extracting ≤80% of the O2 from each breath. Facultative heterotherms (mice and hamsters) exhibited responses in between these two extreme phenotypes. We conclude that even as newborns, homeotherms and heterotherms diverge in how they match O2 supply and O2 demand when progressively cooled in hypoxia, with responses reflecting the degree of heterothermic expression, in addition to reported hypoxia and cold tolerance.


Subject(s)
Hypoxia , Rodentia , Animals , Body Temperature Regulation/physiology , Cold Temperature , Cricetinae , Hypoxia/metabolism , Mice , Oxygen Consumption/physiology , Rats , Respiratory System
15.
Respir Physiol Neurobiol ; 288: 103640, 2021 06.
Article in English | MEDLINE | ID: mdl-33588089

ABSTRACT

Burrowing rodents have a blunted hypercapnic ventilatory response compared to non-burrowing rodents, but semi-fossorial ground squirrels and hamsters are not born with this blunted response when raised in room conditions. This study examined the hypercapnic ventilatory response of rats, hamsters, and ground squirrels raised in burrow-like hypercapnia (∼3 % CO2) through development (embryonic day 16-18 to postnatal day 30) to determine if chronic hypercapnia exerts any effect on the developing and adult semi-fossorial response. Chronic hypercapnia attenuated the ventilatory response to 5 % CO2 by 60 % (rats), 150 % (hamsters), and 70 % (squirrels) in newborns when compared to newborns raised in normal conditions. When raised in burrow conditions, squirrels and hamsters reached the blunted adult response ∼8-12 days sooner in development than their room air counterparts, while burrow-reared rats maintained a consistently blunted response until removal from chronic hypercapnia. Our study revealed no lasting effect of chronic hypercarbia on the ventilatory responses to CO2 in burrowing rodents, but rather a change in the developmental profile such that the blunted adult response was reached earlier in development.


Subject(s)
Carbon Dioxide/metabolism , Hypercapnia/physiopathology , Pulmonary Ventilation/physiology , Rodentia/physiology , Animals , Animals, Newborn , Animals, Wild , Cricetinae , Female , Pregnancy , Rats , Rats, Sprague-Dawley , Rodentia/growth & development , Sciuridae
16.
Article in English | MEDLINE | ID: mdl-33059022

ABSTRACT

The effects of high external ammonia (HEA) exposure on breathing and the potential involvement of ammonia transporting Rh proteins in ammonia sensing were assessed in larval and adult zebrafish. Acute exposure of adults to either 250 or 500 µM (NH4)2SO4 caused increases in ventilation amplitude (AVENT) without affecting frequency (fVENT), resembling the ventilatory response to hypercapnia rather than hypoxia, during which fVENT was increased exclusively. The hyperventilatory response to HEA was prevented by hyperoxia, indicating that control of breathing through ammonia sensing is likely secondary to O2 chemoreception. Neuroepithelial cells (NECs) isolated from gill filaments exhibited a significant increase of intracellular [Ca2+] in response to 1 mM NH4Cl but this response was small (roughly 30%) compared to the response to hypercapnia (37.5 mmHg; ~800% increase). Immunohistochemistry (IHC) failed to reveal the presence of Rh proteins (Rhcgb, Rhbg or Rhag) in gill filament NECs. Knockout of rhcgb did not affect the ventilatory response of adults to HEA. Larvae at 4 days post fertilization (dpf) responded to HEA with increases in fVENT (AVENT was not measured). The hyperventilatory response of larvae to HEA was attenuated (60% reduction) after treatment from 0 to 4 dpf with the sympathetic neurotoxin 6-hydroxydopamine. In larvae, Rhcgb, Rhbg and Rhag were undetectable by IHC in cutaneous NECs yet the fVENT to HEA following Rhbg knockdown was slightly (22%) attenuated. Thus, the hyperventilatory response to external ammonia in adult zebrafish, while apparently initiated by activation of NECs, does not require Rhcgb, nor is the entry of ammonia into NECs reliant on other Rh proteins. The lack of colocalization of Rh proteins with NECs suggests that the entry of ammonia into NECs in larvae, also is not facilitated by this family of ammonia channels.


Subject(s)
Ammonia/pharmacology , Hyperventilation/physiopathology , Respiratory Physiological Phenomena/drug effects , Zebrafish/physiology , Ammonia/metabolism , Animals , Blood Proteins/metabolism , Calcium/metabolism , Cation Transport Proteins/metabolism , Gills/cytology , Gills/drug effects , Gills/metabolism , Immunohistochemistry , Larva/cytology , Larva/drug effects , Larva/metabolism , Membrane Glycoproteins/metabolism , Neuroepithelial Cells/drug effects , Neuroepithelial Cells/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
19.
J Anat ; 237(1): 188-196, 2020 07.
Article in English | MEDLINE | ID: mdl-32173858

ABSTRACT

We examined the morphology of the lungs of five species of high-altitude resident ducks from Lake Titicaca in the Peruvian Andes (yellow-billed pintail [Anas georgica], cinnamon teal [Anas cyanoptera orinomus], puna teal [Anas puna], speckled teal [Anas flavirostris oxyptera], and ruddy duck [Oxyura jamaicensis ferruginea]) and compared them with those of the high-altitude migratory bar-headed goose (Anser indicus) and the low-altitude migratory barnacle goose (Branta leucopsis). We then determined the relationship between mass-specific lung volume, the volume densities of the component parts of the lung, and previously reported hypoxia-induced increases in pulmonary O2 extraction. We found that the mass-specific lung volumes and the mass-specific volume of the exchange tissue were larger in the lungs of high-altitude resident birds. The bar-headed goose had a mass-specific lung volume that fell between those of the low-altitude species and the high-altitude residents, but a mass-specific volume of exchange tissue that was not significantly different than that of the high-altitude residents. The data suggest that the mass-specific volume of the lung may increase with evolutionary time spent at altitude. We found an inverse relationship between the percentage increase in pulmonary O2 extraction and the percentage increase in ventilation across species that was independent of the volume density of the exchange tissue, at least for the resident Andean birds.


Subject(s)
Altitude , Ducks/anatomy & histology , Flight, Animal/physiology , Geese/anatomy & histology , Lung/anatomy & histology , Respiration , Animals , Lung/physiology , Oxygen Consumption/physiology
20.
J Exp Biol ; 223(Pt 5)2020 03 11.
Article in English | MEDLINE | ID: mdl-32041807

ABSTRACT

The cardiovascular system is critical for delivering O2 to tissues. Here, we examined the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared with four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O2 while we monitored heart rate, O2 consumption rate, blood O2 saturation, haematocrit (Hct) and blood haemoglobin (Hb) concentration. We calculated O2 pulse (the product of stroke volume and the arterial-venous O2 content difference), blood O2 concentration and heart rate variability. Regardless of altitude, all eight populations maintained O2 consumption rate with minimal change in heart rate or O2 pulse, indicating that O2 consumption was maintained by either a constant arterial-venous O2 content difference (an increase in the relative O2 extracted from arterial blood) or by a combination of changes in stroke volume and the arterial-venous O2 content difference. Three high-altitude taxa (yellow-billed pintails, cinnamon teal and speckled teal) had higher Hct and Hb concentration, increasing the O2 content of arterial blood, and potentially providing a greater reserve for enhancing O2 delivery during hypoxia. Hct and Hb concentration between low- and high-altitude populations of ruddy duck were similar, representing a potential adaptation to diving life. Heart rate variability was generally lower in high-altitude ducks, concurrent with similar or lower heart rates than low-altitude ducks, suggesting a reduction in vagal and sympathetic tone. These unique features of the Andean ducks differ from previous observations in both Andean geese and bar-headed geese, neither of which exhibit significant elevations in Hct or Hb concentration compared with their low-altitude relatives, revealing yet another avian strategy for coping with high altitude.


Subject(s)
Adaptation, Biological , Altitude , Ducks/physiology , Oxygen Consumption , Anaerobiosis , Animals , Animals, Wild/physiology , North America , Peru
SELECTION OF CITATIONS
SEARCH DETAIL
...