Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Int J Oncol ; 64(6)2024 06.
Article En | MEDLINE | ID: mdl-38757343

Daunorubicin, also known as daunomycin, is a DNA­targeting anticancer drug that is used as chemotherapy, mainly for patients with leukemia. It has also been shown to have anticancer effects in monotherapy or combination therapy in solid tumors, but at present it has not been adequately studied in colorectal cancer (CRC). In the present study, from a screening using an FDA­approved drug library, it was found that daunorubicin suppresses GLI­dependent luciferase reporter activity. Daunorubicin also increased p53 levels, which contributed to both GLI1 suppression and apoptosis. The current detailed investigation showed that daunorubicin promoted the ß­TrCP­mediated ubiquitination and proteasomal degradation of GLI1. Moreover, a competition experiment using BODIPY­cyclopamine, a well­known Smo inhibitor, suggested that daunorubicin does not bind to Smo in HCT116 cells. Administration of daunorubicin (2 mg/kg, ip, qod, 15 days) into HCT116 xenograft mice profoundly suppressed tumor progress and the GLI1 level in tumor tissues. Taken together, the present results revealed that daunorubicin suppresses canonical Hedgehog pathways in CRC. Ultimately, the present study discloses a new mechanism of daunorubicin's anticancer effect and might provide a rationale for expanding the clinical application of daunorubicin.


Apoptosis , Colorectal Neoplasms , Daunorubicin , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1 , Humans , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Daunorubicin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Animals , Mice , Apoptosis/drug effects , HCT116 Cells , Smoothened Receptor/metabolism , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Ubiquitination/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects
...