Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Biochem Zool ; 93(4): 282-295, 2020.
Article in English | MEDLINE | ID: mdl-32484722

ABSTRACT

The limitations on energy availability and outputs have been implied to have a profound effect on the evolution of many morphological and behavioral traits. It has been suggested that the reproductive performance of mammals is frequently constrained by intrinsic physiological factors, such as the capacity of the mammary glands to produce milk (the peripheral limitation [PL] hypothesis) or that of the body to dissipate heat (the heat dissipation limitation [HDL] hypothesis). Research on a variety of small mammals, however, has so far failed to provide unequivocal support for one hypothesis over the other. We tested the PL and HDL hypotheses in female striped hamsters (Cricetulus barabensis) with artificially manipulated litter sizes of two (three or four pups removed from natural litter size), five, eight (two or three pups added to natural litter size), and 12 (five to seven pups added to natural litter size) pups at ambient temperatures of 21° and 30°C. Energy intake and milk output of mothers, litter size, and litter mass were measured throughout lactation. Several markers indicating digestive enzyme activity and the gene expression of hypothalamic neuropeptides related to food intake were also measured. Food consumption and milk output increased with increasing litter size but reached a ceiling at 12 pups, causing 12-pup litters to have significantly lower litter mass and pup body mass than litters composed of fewer pups. Litter mass and maternal metabolic rate, milk output, maltase, sucrase, and aminopeptidase activity in the small intestine, and gene expression of hypothalamic orexigenic peptides were significantly lower at 30°C than at 21°C, and these differences were considerably more pronounced in 12-pup litters. These results suggest that PL and HDL can operate simultaneously but that the HDL hypothesis is probably more valid at warmer temperatures. Our results suggest that increased environmental temperatures in future climates may limit reproductive output through heat dissipation limits.


Subject(s)
Body Temperature Regulation/physiology , Cricetulus/physiology , Energy Metabolism/physiology , Lactation/physiology , Temperature , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Body Weight , Female , Gene Expression Regulation/physiology , Hypothalamus/metabolism , Intestine, Small/enzymology , Litter Size , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Reproduction
2.
Sci Rep ; 8(1): 920, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343842

ABSTRACT

Food restriction (FR) is the most commonly used intervention to prevent the overweight. However, the lost weight is usually followed by "compensatory growth" when FR ends, resulting in overweight. The present study was aimed to examining the behavior patterns and hormones mechanisms underpinning the over-weight. Energy budget and body fat content, and several endocrine markers related to leptin signals were examined in the striped hamsters under 20% FR refed by either low-fat diet (LF group) or high-fat diet (HF group). Body mass and fat content significantly regained when FR ended, and the hamsters in HF group showed 49.1% more body fat than in LF group (P < 0.01). Digestive energy intake was higher by 20.1% in HF than LF group, while metabolic thermogenesis and behavior patterns did not differed between the two groups. Gene expression of leptin receptor and anorexigenic peptides of pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript in hypothalamus were significantly up-regulated in LF group, but down-regulated in HF group. It suggests that effective leptin signals to the brain were involved in attenuation of hyperphagia in hamsters refed with LF. However, "leptin resistance" probably occurred in hamsters refed with HF, which impaired the control of hyperphagia, resulting in development of over-weight.


Subject(s)
Diet, High-Fat/adverse effects , Leptin/metabolism , Overweight/metabolism , Adipose Tissue/metabolism , Animals , Body Weight/physiology , Cricetinae , Dietary Fats/metabolism , Down-Regulation/physiology , Eating/physiology , Energy Intake/physiology , Hyperphagia/metabolism , Hypothalamus/metabolism , Male , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/metabolism , Thermogenesis/physiology , Up-Regulation/physiology , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...