Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38865038

ABSTRACT

The French National Metrology Institute (LNE) initiated a series of events to identify priorities for test methods and their harmonisation that directly address regulatory needs in Nanomedicine. One of these workshops entitled "The International Standardisation Roadmap for Nanomedicine" held in October 2023 (Paris, France) brought together key experts in the characterisation of nanomedicines and medical products containing nanomaterials, including the Joint Research Centre of the European Commission, SINTEF Industry and the metrology institutes of France, the UK, the USA and Canada, two flagship initiatives of the European Commission (PHOENIX and SAFE-n-MEDTECH Open Innovation Test Beds), representatives of a working party on mRNA vaccines at the European Directorate for the Quality of Medicines (EDQM) and members of international standardisation and pre-normative organisations (including CEN, ISO, ASTM, VAMAS). Two take-home message came out from the discussion. First, developing standard test methods and Reference Materials (RMs) for nanomedicines is a key priority for the European Commission and various stakeholders. Furthermore, there was a unanimous recognition of the need for a unified approach between standardisation committees, regulators and the nanomedicine community. At the USA, Canadian and European level, examples of success stories and of future initiative have been discussed. Future perspectives include the creation of a dedicated Working Group under CEN/TC 352 to consolidate efforts and develop a nanomedicine standardisation roadmap.

2.
J Pharm Sci ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777176

ABSTRACT

The formulation of paediatric medicines faces significant challenges to meet the requirements for safe and accurate administration, while maintaining a suitable taste. Multiparticulate formulations have a strong potential to address these challenges because they combine dose flexibility with ease of administration. Understanding the stability of multiparticulate formulations over storage as a function of time and environmental parameters, such as humidity and temperature, is important to manage their commercialisation and use. In this work, we have expanded the toolkit of available techniques for studying multiparticulates beyond those such as scanning electron microscopy (SEM) and confocal laser scanning microscopy. We include advanced methods of environmentally-controlled SEM to monitor temperature- and humidity-induced changes in-situ, and a variety of Raman spectroscopies including stimulated Raman scattering microscopy to identify and localise the different ingredients at the surface and inside the multiparticulates. These techniques allowed unprecedented monitoring of specific changes to the particulate structure and distribution of individual ingredients due to product aging. These methods should be considered as valuable novel tools for in-depth characterisation of multiparticulate formulations to further understand chemical changes occurring during their development, manufacturing and long-term storage. We envisage these techniques to be useful in furthering the development of future medicine formulations.

3.
Nanoscale ; 15(45): 18218-18223, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37937404

ABSTRACT

The measurement of relative concentration of nanoparticles in liquids has been investigated using NMR proton relaxation, addressing a gap in analytical capabilities for highly concentrated dispersions. This technique has a limited footprint, short measurement time and ease of operation making it a promising quality control method to support the development and manufacture of nanomaterials.

4.
J Phys Chem A ; 127(39): 8220-8227, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37733882

ABSTRACT

Nanoparticles used for medical applications commonly possess coatings or surface functionalities intended to provide specific behavior in vivo, for example, the use of PEG to provide stealth properties. Direct, quantitative measurement of the surface chemistry and composition of such systems in a hydrated environment has thus far not been demonstrated, yet such measurements are of great importance for the development of nanomedicine systems. Here we demonstrate the first use of cryo-XPS for the measurement of two PEG-functionalized nanomedicines: a polymeric drug delivery system and a lipid nanoparticle mRNA carrier. The observed differences between cryo-XPS and standard XPS measurements indicate the potential of cryo-XPS for providing quantitative measurements of such nanoparticle systems in hydrated conditions.


Subject(s)
Nanomedicine , Nanoparticles , Polyethylene Glycols/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polymers
5.
Anal Chim Acta ; 1262: 341234, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37179055

ABSTRACT

The quantification of the drug associated to nanoparticle carriers, often expressed in terms of encapsulation efficiency, is a regulatory requirement. The establishment of independent methods to evaluate this parameter provides a means for measurement validation, which is critical in providing confidence in the methods and enabling the robust characterization of nanomedicines. Chromatography is traditionally used to measure drug encapsulation into nanoparticles. Here, we describe an additional independent strategy based on analytical centrifugation. The encapsulation of diclofenac into nanocarriers was quantified based on the mass difference between placebo (i.e. unloaded) and loaded nanoparticles. This difference was estimated using particle densities measured by differential centrifugal sedimentation (DCS) and size and concentration values measured by particle tracking analysis (PTA). The proposed strategy was applied to two types of formulations, namely poly(lactic-co-glycolic acid) (PLGA) nanoparticles and nanostructured lipid carriers, which were analysed by DCS operated in sedimentation and flotation modes, respectively. The results were compared to those from high performance liquid chromatography (HPLC) measurements. Additionally, X-ray photoelectron spectroscopy analysis was used to elucidate the surface chemical composition of the placebo and loaded nanoparticles. The proposed approach enables the monitoring of batch-to-batch consistency and the quantification of diclofenac association to PLGA nanoparticles from 0.7 ng to 5 ng of drug per 1 µg of PLGA, with good linear correlation between DCS and HPLC results (R2 = 0.975). Using the same approach, similar quantification in lipid nanocarriers was possible for a loading of diclofenac ≥1.1 ng per 1 µg of lipids, with results in agreement with the HPLC method (R2 = 0.971). Hence, the strategy proposed here expands the analytical tools available for evaluating nanoparticles encapsulation efficiency, being thus significant for increasing the robustness of drug-delivery nanocarriers characterization.


Subject(s)
Diclofenac , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Lipids , Particle Size , Drug Carriers/chemistry
6.
J Pharm Sci ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38163549

ABSTRACT

Nanoparticles are increasingly implemented in biomedical applications, including the diagnosis and treatment of disease. When exposed to complex biological media, nanoparticles spontaneously interact with their surrounding environment, leading to the surface-adsorption of small and bio- macromolecules- termed the "corona". Corona composition is governed by nanoparticle properties and incubation parameters. While the focus of most studies is on the protein signature of the nanoparticle corona, the impact of experimental protocols on nanoparticle size in the presence of complex biological media, and the impact of nanoparticle recovery from biological media has not yet been reported. Here using a non-degradable robust model, we show how centrifugation-resuspension protocols used for the isolation of nanoparticles from incubation media, incubation duration and shear flow conditions alter nanoparticle parameters including particle size, zeta potential and total protein content. Our results show significant changes in nanoparticle size following exposure to media containing protein under different flow conditions, which also altered the composition of surface-adsorbed proteins profiled by SDS-PAGE. Our in situ analysis of nanoparticle size in media containing protein using particle tracking analysis highlights that centrifugation-resuspension is disruptive to agglomerates that are spontaneously formed in protein containing media, highlighting the need for in situ analytical methods that do not alter the intermediates formed following nanoparticle exposure to biological media. Nanomedicines are mostly intended for parenteral administration, and our findings show that parameters such as shear flow can significantly alter nanoparticle physicochemical parameters. Overall, we show that the centrifugation-resuspension isolation of nanoparticles from media significantly alters particle parameters in addition to the overall protein composition of surface-adsorbed proteins. We recommend that nanoparticle characterization pipelines studying bio-nano interactions during early nanomedicine development consider biologically-relevant shear flow conditions and media composition that can significantly alter particle physical parameters and subsequent conclusions from these studies.

7.
Ultrason Sonochem ; 89: 106141, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36067646

ABSTRACT

Control over the agglomeration state of manufactured particle systems for drug and oligonucleotide intracellular delivery is paramount to ensure reproducible and scalable therapeutic efficacy. Ultrasonication is a well-established mechanism for the deagglomeration of bulk powders in dispersion. Its use in manufacturing requires strict control of the uniformity and reproducibility of the cavitation field within the sample volume to minimise within-batch and batch-to-batch variability. In this work, we demonstrate the use of a reference cavitating vessel which provides stable and reproducible cavitation fields over litre-scale volumes to assist the controlled deagglomeration of a novel non-viral particle-based plasmid delivery system. The system is the Nuvec delivery platform, comprising polyethylenimine-coated spiky silica particles with diameters of âˆ¼ 200 nm. We evaluated the use of controlled cavitation at different input powers and stages of preparation, for example before and after plasmid loading. Plasmid loading was confirmed by X-ray photoelectron spectroscopy and gel electrophoresis. The latter was also used to assess plasmid integrity and the ability of the particles to protect plasmid from potential degradation caused by the deagglomeration process. We show the utility of laser diffraction and differential centrifugal sedimentation in quantifying the efficacy of product de-agglomeration in the microscale and nanoscale size range respectively. Transmission electron microscopy was used to assess potential damages to the silica particle structure due to the sonication process.


Subject(s)
Nanomedicine , Polyethyleneimine , DNA , Oligonucleotides , Particle Size , Polyethyleneimine/chemistry , Reproducibility of Results , Silicon Dioxide
8.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262538

ABSTRACT

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

9.
ACS Omega ; 6(22): 14049-14058, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34124428

ABSTRACT

Laser diffraction (LD) is a well-established tool for the measurement of particle size distribution. Recently, its demand and use for the measurement of complex biological systems have increased. Among the challenges that these types of samples present, there is the presence of multiple particle populations whose modal size may span across several orders of magnitude. In this study, we assessed the accuracy of LD for the measurement of the modal diameter of both single and mixed populations of polystyrene particles with diameters ranging from 60 nm to 40 µm. We discuss the application of different available algorithms to the analysis of the data and their impact on the measurement results. Independent methods were applied to guide the selection of the algorithms and validate the measured size distributions. We found that the modal diameters of the particle size distribution measured by LD for the mixed suspension was accurate within 2 % for particles larger than 1 µm and generally within 25 % for the particles tested. Method repeatability was found to be robust, with deviations below 1%. The method was also found to be useful for estimating the relative concentration of the particle populations in the mixed samples. This study provides confidence in the use of LD for the measurement of complex multimodal colloidal samples.

10.
Int J Nanomedicine ; 16: 1977-1992, 2021.
Article in English | MEDLINE | ID: mdl-33727810

ABSTRACT

BACKGROUND: Phytostanols are naturally occurring compounds that reduce blood cholesterol levels significantly. However, their aqueous insolubility poses formulation challenges. AIM: To formulate and characterize solid lipid nanoparticle carriers for phytostanol esters to enhance the bioavailability of phytostanols. METHODS: Phytostanol ester solid lipid nanoparticles were formulated by the microemulsion method. They were characterized for particle size distribution, polydispersity index, shape, surface charge, entrapment efficiency, stability, chemical structure, and thermal properties. The uptake of the formulation by cell lines, HepG2 and HT-29, and its effect on cell viability were evaluated. RESULTS: The formulation of solid lipid nanoparticles was successfully optimised by varying the type of lipids and their concentration relative to that of surfactants in the present study. The optimised formulation had an average diameter of (171 ± 9) nm, a negative surface charge of (-23.0 ± 0.8) mV and was generally spherical in shape. We report high levels of drug entrapment at (89 ± 5)% in amorphous form, drug loading of (9.1 ± 0.5)%, nanoparticle yield of (67 ± 4)% and drug excipient compatibility. The biological safety and uptake of the formulations were demonstrated on hepatic and intestinal cell lines. CONCLUSION: Phytostanol ester solid lipid nanoparticles were successfully formulated and characterized. The formulation has the potential to provide an innovative drug delivery system for phytostanols which reduce cholesterol and have a potentially ideal safety profile. This can contribute to better management of one of the main risk factors of cardiovascular diseases.


Subject(s)
Drug Compounding , Esters/chemistry , Hypercholesterolemia/drug therapy , Lipids/chemistry , Nanoparticles/chemistry , Phytosterols/therapeutic use , Cell Death , Emulsions/chemistry , Endocytosis , Flow Cytometry , HT29 Cells , Hep G2 Cells , Humans , Particle Size , Powders , Spectroscopy, Fourier Transform Infrared , Static Electricity , Temperature
11.
Methods Mol Biol ; 2208: 203-224, 2021.
Article in English | MEDLINE | ID: mdl-32856265

ABSTRACT

X-ray photoelectron spectroscopy is a highly surface-sensitive analytical technique, capable of providing quantitative information on the chemical composition of materials within the top ∼10 nm of their surface. For samples consisting of distinct underlayer and overlayer materials, the thickness of the coating can also be determined if it falls within this ∼10 nm information depth, which is often the case for peptide layers. Such measurements are simple to perform for flat samples and can also be performed on nanoparticulate samples provided that either the core radius or total particle radius are known. Here, we describe a straightforward protocol for obtaining such measurements from peptide coatings on both flat surfaces and nanoparticles, including preparation of nanoparticle samples from suspension, data acquisition, and analysis.


Subject(s)
Peptides/chemistry , Photoelectron Spectroscopy/methods , Nanoparticles/chemistry , Surface Properties
12.
J Pharm Sci ; 109(7): 2284-2293, 2020 07.
Article in English | MEDLINE | ID: mdl-32278922

ABSTRACT

The measurement of nanoparticle size, and size distribution, is important to the development of pharmaceutical nanoparticle products and their manufacturing processes. In this work we report on the use of 4 widely-used liquid-phase techniques, dynamic light scattering, differential centrifugal sedimentation, particle tracking analysis, and tuneable resistive pulse sensing to measure 4 different batches of AZD2811NPs. The techniques rely on different physical principles to measure nanoparticle size. The batches cover a range of different manufacturing scales and different sites of manufacture, and were made to support toxicity, clinical, and engineering studies. The results from the different techniques and different batches are compared in terms of the average size, and size distribution, measured. In addition, we discuss the suitability of techniques for different applications, for example, QC and process understanding.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Dynamic Light Scattering , Particle Size
13.
Annu Rev Anal Chem (Palo Alto Calif) ; 13(1): 431-452, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32084321

ABSTRACT

Development and application of nanotechnology-enabled medical products, including drugs, devices, and in vitro diagnostics, are rapidly expanding in the global marketplace. In this review, the focus is on providing the reader with an introduction to the landscape of commercially available nanotechnology-enabled medical products as well as an overview of the international documentary standards and reference materials that support and facilitate efficient regulatory evaluation and reliable manufacturing of this diverse group of medical products. We describe the materials, test methods, and standards development needs for emerging medical products. Scientific and measurement challenges involved in the development and application of innovative nanoenabled medical products motivate discussion throughout this review.


Subject(s)
Biological Products/analysis , Nanomedicine/standards , Nanotechnology/standards
15.
Nanomaterials (Basel) ; 9(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30939772

ABSTRACT

The industrial exploitation of high value nanoparticles is in need of robust measurement methods to increase the control over product manufacturing and to implement quality assurance. InNanoPart, a European metrology project responded to these needs by developing methods for the measurement of particle size, concentration, agglomeration, surface chemistry and shell thickness. This paper illustrates the advancements this project produced for the traceable measurement of nanoparticle number concentration in liquids through small angle X-ray scattering (SAXS) and single particle inductively coupled plasma mass spectrometry (spICPMS). It also details the validation of a range of laboratory methods, including particle tracking analysis (PTA), dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), ultraviolet visible spectroscopy (UV-vis) and electrospray-differential mobility analysis with a condensation particle counter (ES-DMA-CPC). We used a set of spherical gold nanoparticles with nominal diameters between 10 nm and 100 nm and discuss the results from the various techniques along with the associated uncertainty budgets.

16.
Langmuir ; 35(14): 4927-4935, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30869903

ABSTRACT

Measuring the number concentration of colloidal nanoparticles (NPs) is critical for assessing reproducibility, enabling compliance with regulation, and performing risk assessments of NP-enabled products. For nanomedicines, their number concentration directly relates to their dose. However, the lack of relevant reference materials and established traceable measurement approaches make the validation of methods for NP number concentration difficult. Furthermore, commercial products often exhibit agglomeration, but guidelines for dealing with nonideal samples are scarce. We have compared the performance of five benchtop measurement methods for the measurement of colloidal number concentration in the presence of different levels of agglomeration. The methods are UV-visible spectroscopy, differential centrifugal sedimentation, dynamic light scattering, particle tracking analysis, and single-particle inductively coupled plasma mass spectrometry. We find that both ensemble and particle-by-particle methods are in close agreement for monodisperse NP samples and three methods are within 20% agreement for agglomerated samples. We discuss the sources of measurement uncertainties, including how particle agglomeration affects measurement results. This work is a first step toward validation and expansion of the toolbox of methods available for the measurement of real-world NP products.

17.
Biointerphases ; 13(6): 061002, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30424611

ABSTRACT

This paper provides an empirical formula to calculate the extinction efficiencies of gold nanoparticles over the size range 1-1000 nm in fluids with refractive indexes which extend from n = 1 to n = 1.62. The formula contains a shape factor to account for nonspherical particles and aggregates. The empirical curves are fitted to values calculated from accurate Mie and T-Matrix theory and confirm previous descriptions which are restricted to nearly spherical particles in water of diameter between 5 and 100 nm. This paper demonstrates that these previous descriptions will be in error for fluids other than water and for nonspherical particles greater than 100 nm in size. An empirical description is provided which matches calculated values to within a few percent across most of the range. The description also matches experimental data to within the standard relative error, currently 5% at best, using other methods which directly measure the particle concentration. These extinction efficiencies can be used to validate the concentration of gold nanoparticles in a wide range of situations to support the drive for reproducibility in nanoparticle research.


Subject(s)
Gold/analysis , Metal Nanoparticles/analysis , Spectrophotometry/methods , Suspensions/chemistry
18.
Langmuir ; 33(33): 8213-8224, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28731349

ABSTRACT

Line-start incremental centrifugal liquid sedimentation (disc-CLS) is a powerful method to determine particle size based on the principles of Stokes' law. Because several of the input quantities of the Stokes equation cannot be easily determined for this case of a rotating disc, the disc-CLS approach relies on calibrating the sedimentation time scale with reference particles. To use these calibrant particles for establishing metrological traceability, they must fulfill the same requirements as those imposed on a certified reference material, i.e., their certified Stokes diameter and density value must come with a realistic measurement uncertainty and with a traceability statement. As is the case for several other techniques, the calibrants do not always come with uncertainties for the assigned modal diameter and effective particle density. The lack of such information and the absence of a traceability statement make it difficult for the end-user to estimate the uncertainty of the measurement results and to compare them with results obtained by others. We present the results of a collaborative study that aimed at demonstrating the traceability of particle size results obtained with disc-CLS. For this purpose, the particle size and effective particle density of polyvinyl chloride calibrants were measured using different validated methods, and measurement uncertainties were estimated according to the Guide to the Expression of Uncertainty in Measurement. The results indicate that the modal Stokes diameter and effective particle density that are assigned to the calibrants are accurate within 5% and 3.5%, respectively, and that they can be used to establish traceability of particle size results obtained with disc-CLS. This conclusion has a great impact on the traceability statement of certified particle size reference materials, for which the traceability is limited to the size and density values of the calibrant particles.

19.
J Vis Exp ; (130)2017 12 25.
Article in English | MEDLINE | ID: mdl-29364209

ABSTRACT

The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology.


Subject(s)
Nanostructures/chemistry , Water/chemistry
20.
Biointerphases ; 11(4): 04B312, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28010112

ABSTRACT

Engineered peptides capable of binding to silica have been used to provide contrast in chemical force microscopy and tested for their capacity to selectively capture silica nanoparticles (NPs). Gold coated atomic force microscopy (AFM) microcantilevers with integrated tips and colloidal probes were functionalized with engineered peptides through a thiol group of a terminal cysteine which was linked via a glycine trimer to a 12-mer binding sequence. The functionalized probes demonstrated a significantly increased binding force on silicon oxide areas of a gold-patterned silicon wafer, whereas plain gold probes, and those functionalized with a random permutation of the silica binding peptide motif or an all-histidine sequence displayed similar adhesion forces to gold and silicon oxide. As the functionalized probes also allowed contact mode imaging subsequently to the adhesion mapping, also the associated friction contrast was measured and found to be similar to the adhesion contrast. Furthermore, the adsorption of silica NPs onto planar gold surfaces functionalized in the same manner was observed to be selective. Notably, the surface coverage with silica NPs was found to decrease with increasing pH, implying the importance of electrostatic interactions between the peptide and the NPs. Finally, the adsorption of silica NPs was monitored via the decrease in fundamental resonance frequency of an AFM microcantilever functionalized with silica binding peptides.


Subject(s)
Microscopy, Atomic Force/methods , Nanoparticles/metabolism , Recombinant Proteins/metabolism , Gold/metabolism , Nanoparticles/chemistry , Oxides/metabolism , Protein Binding , Silicon Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL