Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Article in English | MEDLINE | ID: mdl-39173711

ABSTRACT

OBJECTIVES: An increase in cardiac biomarkers is a prerequisite to diagnose periprocedural myocardial infarction (PMI) after coronary artery bypass grafting (CABG). Early-phase risk detection may be aided by modeling time-dependent serum creatine kinase-MB (CK-MB) concentrations. This study aimed to model the kinetics of CK-MB, while identifying its influencing factors. METHODS: Patients who underwent elective CABG and had CK-MB measurements within 72 hours postoperatively were included. The primary outcome was the modeled post-hoc kinetics of CK-MB in patients without potential PMI. These patients were defined as having no potential PMI in case of absence of: ischemic electrocardiographic abnormalities, imaging abnormalities, in-hospital cardiac arrest, mortality, or postoperative unplanned catheterization. A web-based application was created using mixed-effect modeling to provide an interactive and individualized result. RESULTS: 635 patients underwent elective isolated CABG, resulting in 1589 CK-MB measurements. Of these, 609 patients (96%) had no potential PMI, while 26 (4%) had potential PMI. Male sex, aortic cross-clamp time, and cardioplegia type significantly impacted CK-MB concentrations. The diagnostic accuracy of the model had an area under the ROC curve of 82.8% (72.6-90.2%). A threshold of 7 µg/L yielded a sensitivity of 94% and a specificity of 80% (positive predictive value, 17%; negative predictive value, 99%) for excluding potential PMI in our own study population. CONCLUSION: CK-MB release after CABG depends on the timing of measurement, sex, aortic cross-clamp time, and cardioplegia type. The model at https://www.cardiomarker.com/ckmb can be validated, reproduced, refined, and applied to other biomarkers.

2.
BMJ Open Sport Exerc Med ; 10(2): e002070, 2024.
Article in English | MEDLINE | ID: mdl-38882206

ABSTRACT

Exercise can produce transient elevations of cardiac troponin (cTn) concentrations, which may resemble the cTn release profile of myocardial infarction. Consequently, clinical interpretation of postexercise cTn elevations (ie, values above the 99th percentile upper reference limit) remains challenging and may cause clinical confusion. Therefore, insight into the physiological versus pathological nature of postexercise cTn concentrations is warranted. We aim to (1) establish resting and postexercise reference values for recreational athletes engaged in walking, cycling or running exercise; (2) compare the prevalence of (sub)clinical coronary artery disease in athletes with high versus low postexercise cTn concentrations and (3) determine the association between postexercise cTn concentrations and the incidence of major adverse cardiovascular events (MACE) and mortality during long-term follow-up. For this purpose, the prospective TRoponin concentrations following Exercise and the Association with cardiovascular ouTcomes (TREAT) observational cohort study was designed to recruit 1500 recreational athletes aged ≥40 to <70 years who will participate in Dutch walking, cycling and running events. Baseline and postexercise high-sensitivity cTnT and cTnI concentrations will be determined. The prevalence and magnitude of coronary atherosclerosis on computed tomography (eg, coronary artery calcium score, plaque type, stenosis degree and CT-derived fractional flow reserve) will be compared between n=100 athletes with high postexercise cTn concentrations vs n=50 age-matched, sex-matched and sport type-matched athletes with low postexercise cTn concentrations. The incidence of MACE and mortality will be assessed in the entire cohort up to 20 years follow-up. The TREAT study will advance our understanding of the clinical significance of exercise-induced cTn elevations in middle-aged and older recreational athletes. Trial registration number NCT06295081.

3.
J Appl Lab Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816928

ABSTRACT

BACKGROUND: Cardiac troponin T (cTnT) is key in diagnosing myocardial infarction (MI) but is also elevated in end-stage renal disease (ESRD) patients. Specific larger cTnT proteoforms were identified for the acute phase of MI, while in serum of ESRD patients solely small cTnT fragments were found. However, others allocated this to a pre-analytic effect due to abundant thrombin generation in serum. Therefore, we investigated the effect of various anticoagulation methods on cTnT composition and concentration and compared the cTnT composition of MI and ESRD patients. METHODS: The agreement of cTnT concentrations between simultaneously collected serum, lithium-heparin (LH) plasma, and ethylenediaminetetraacetic acid (EDTA) plasma was studied using the high-sensitivity (hs-)cTnT immunoassay. cTnT proteoform composition was investigated in a standardized time-dependent manner through spike experiments and in simultaneously collected blood matrixes of MI and ESRD patients. RESULTS: Excellent hs-cTnT concentration agreements were observed across all blood matrixes (slopes > 0.98; 95% CI, 0.96-1.04). Time-dependent degradation (40 kDa intact:29 kDa fragment:15 to 18 kDa fragments) was found in LH plasma and EDTA plasma, and serum in ratios (%) of 90:10:0, 0:5:95, and 0:0:100, respectively (48 h after blood collection). Moreover, gel filtration chromatography (GFC) profiles illustrated mainly larger cTnT proteoforms in MI patients, while in ESRD patients mainly 15 to 18 kDa fragments were found for all matrices. CONCLUSIONS: The extent of cTnT degradation in vitro is dependent on the (anti)coagulation method, without impacting hs-cTnT concentrations. Furthermore, mainly larger cTnT proteoforms were present in MI patients, while in ESRD patients mainly small 15 to 18 kDa cTnT fragments were found. These insights are essential when developing a novel hs-cTnT assay targeting larger cTnT proteoforms.

4.
Intensive Care Med Exp ; 12(1): 26, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451350

ABSTRACT

BACKGROUND: Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). METHODS: Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography (CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels. RESULTS: In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], p = 0.012), which decreased during admission (- 0.27 µVs per day [- 0.43; - 0.11], p = 0.001). Patients with the highest CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT (0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002). CONCLUSION: Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification and prognostication of patients with critical illness.

5.
Am J Physiol Heart Circ Physiol ; 326(4): H1045-H1052, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38363583

ABSTRACT

The magnitude of exercise-induced cardiac troponin (cTn) elevations is dependent on cardiovascular health status, and previous studies have shown that occult coronary atherosclerosis is highly prevalent among amateur athletes. We tested the hypothesis that middle-aged and older athletes with coronary atherosclerosis demonstrate greater cTn elevations following a controlled endurance exercise test compared with healthy peers. We included 59 male athletes from the Measuring Athletes' Risk of Cardiovascular events 2 (MARC-2) study and stratified them as controls [coronary artery calcium score (CACS) = 0, n = 20], high CACS [≥300 Agatston units or ≥75th Multi-Ethnic Study of Atherosclerosis (MESA) percentile, n = 20] or significant stenosis (≥50% in any coronary artery, n = 19). Participants performed a cycling test with incremental workload until volitional exhaustion. Serial high-sensitivity cTn (hs-cTn) T and I concentrations were measured (baseline, after 30-min warm-up, and 0, 30, 60, 120, and 180 min postexercise). There were 58 participants (61 [58-69] yr) who completed the exercise test (76 ± 14 min) with a peak heart rate of 97.7 [94.8-101.8]% of their estimated maximum. Exercise duration and workload did not differ across groups. High-sensitivity cardiac troponin T (Hs-cTnT) and high-sensitivity cardiac troponin I (hs-cTnI) concentrations significantly increased (1.55 [1.33-2.14]-fold and 2.76 [1.89-3.86]-fold, respectively) over time, but patterns of cTn changes and the incidence of concentrations >99th percentile did not differ across groups. Serial sampling of hs-cTnT and hs-cTnI concentrations during and following an exhaustive endurance exercise test did not reveal differences in exercise-induced cTn release between athletes with versus without coronary atherosclerosis. These findings suggest that a high CACS or a >50% stenosis in any coronary artery does not aggravate exercise-induced cTn release in middle-aged and older athletes.NEW & NOTEWORTHY Exercise-induced cardiac troponin (cTn) release is considered to be dependent on cardiovascular health status. We tested whether athletes with coronary atherosclerosis demonstrate greater exercise-induced cTn release compared with healthy peers. Athletes with coronary atherosclerosis did not differ in cTn release following exercise compared with healthy peers. Our findings suggest that a high CACS or a >50% stenosis in any coronary artery does not aggravate exercise-induced cTn release in middle-aged and older athletes.


Subject(s)
Coronary Artery Disease , Middle Aged , Humans , Male , Aged , Coronary Artery Disease/diagnosis , Constriction, Pathologic , Troponin I , Troponin T , Athletes , Biomarkers
7.
9.
Eur Heart J ; 44(2): 100-112, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36337034

ABSTRACT

The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular.


Subject(s)
Coronary Artery Bypass , Myocardial Infarction , Humans , Coronary Artery Bypass/adverse effects , Myocardial Infarction/etiology , Troponin I , Troponin T , Biomarkers
10.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430335

ABSTRACT

Myocardial infarction is the most common cause of death worldwide. An understanding of the alterations in protein pathways is needed in order to develop strategies that minimize myocardial damage. To identify the protein signature of cardiac ischemia/reperfusion (I/R) injury in rats, we combined, for the first time, protein matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and label-free proteomics on the same tissue section placed on a conductive slide. Wistar rats were subjected to I/R surgery and sacrificed after 24 h. Protein MALDI-MSI data revealed ischemia specific regions, and distinct profiles for the infarct core and border. Firstly, the infarct core, compared to histologically unaffected tissue, showed a significant downregulation of cardiac biomarkers, while an upregulation was seen for coagulation and immune response proteins. Interestingly, within the infarct tissue, alterations in the cytoskeleton reorganization and inflammation were found. This work demonstrates that a single tissue section can be used for protein-based spatial-omics, combining MALDI-MSI and label-free proteomics. Our workflow offers a new methodology to investigate the mechanisms of cardiac I/R injury at the protein level for new strategies to minimize damage after MI.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Reperfusion Injury , Animals , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Myocardial Infarction/pathology , Reperfusion
11.
Clin Chem ; 68(12): 1564-1575, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36366960

ABSTRACT

BACKGROUND: Cardiac troponin I and T are both used for diagnosing myocardial infarction (MI) after coronary artery bypass grafting (CABG), also known as type 5 MI (MI-5). Different MI-5 definitions have been formulated, using multiples of the 99th percentile upper reference limit (10×, 35×, or 70× URL), with or without supporting evidence. These definitions are arbitrarily chosen based on conventional assays and do not differentiate between troponin I and T. We therefore investigated the kinetics of high-sensitivity cardiac troponin I (hs-cTnI) and T (hs-cTnT) following CABG. METHODS: A systematic search was applied to MEDLINE and EMBASE databases including the search terms "coronary artery bypass grafting" AND "high-sensitivity cardiac troponin." Studies reporting hs-cTnI or hs-cTnT on at least 2 different time points were included. Troponin concentrations were extracted and normalized to the assay-specific URL. RESULTS: For hs-cTnI and hs-cTnT, 17 (n = 1661 patients) and 15 studies (n = 2646 patients) were included, respectively. Preoperative hs-cTnI was 6.1× URL (95% confidence intervals: 4.9-7.2) and hs-cTnT 1.2× URL (0.9-1.4). Mean peak was reached 6-8 h postoperatively (126× URL, 99-153 and 45× URL, 29-61, respectively). Subanalysis of hs-cTnI illustrated assay-specific peak heights and kinetics, while subanalysis of surgical strategies revealed 3-fold higher hs-cTnI than hs-cTnT for on-pump CABG and 5-fold for off-pump CABG. CONCLUSION: Postoperative hs-cTnI and hs-cTnT following CABG surpass most current diagnostic cutoff values. hs-cTnI was almost 3-fold higher than hs-cTnT, and appeared to be highly dependent on the assay used and surgical strategy. There is a need for assay-specific hs-cTnI and hs-cTnT cutoff values for accurate, timely identification of MI-5.


Subject(s)
Myocardial Infarction , Troponin I , Humans , Troponin T , Coronary Artery Bypass , Myocardial Infarction/diagnosis , Biological Assay , Biomarkers
12.
Ann Clin Biochem ; 59(4): 302-307, 2022 07.
Article in English | MEDLINE | ID: mdl-35352974

ABSTRACT

Determination of plasma vitamin B12 (B12) is a frequently requested laboratory analysis, mainly employed to establish B12 deficiency. However, an increased level of B12 is a common unexpected finding that may be related to an increased concentration of one of the B12 binding proteins, haptocorrin or transcobalamin. This paper describes the extensive laboratory evaluation of a patient with an elevated level of plasma B12 with various well-established assays. Initial studies suggested the presence of a macromolecule consisting of haptocorrin bound B12. Specific determinations of the B12-binding proteins revealed normal amounts of haptocorrin but a markedly increase in both total and B12 saturated transcobalamin (holo-TC). The results are in accord with the presence of macro-transcobalamin. These experiments reveal that determination of the nature of the B12-macromolecules is troublesome due to differences in assays applied to measure these proteins. In addition, this publication creates awareness of macro-holo-TC as a cause of an unexplained increased B12 level.


Subject(s)
Transcobalamins , Vitamin B 12 Deficiency , Humans , Transcobalamins/analysis , Vitamin B 12
14.
Am J Cardiol ; 170: 118-127, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35221103

ABSTRACT

Myocardial injury in COVID-19 is associated with in-hospital mortality. However, the development of myocardial injury over time and whether myocardial injury in patients with COVID-19 at the intensive care unit is associated with outcome is unclear. This study prospectively investigates myocardial injury with serial measurements over the full course of intensive care unit admission in mechanically ventilated patients with COVID-19. As part of the prospective Maastricht Intensive Care COVID cohort, predefined myocardial injury markers, including high-sensitivity cardiac troponin T (hs-cTnT), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and electrocardiographic characteristics were serially collected in mechanically ventilated patients with COVID-19. Linear mixed-effects regression was used to compare survivors with nonsurvivors, adjusting for gender, age, APACHE-II score, daily creatinine concentration, hypertension, diabetes mellitus, and obesity. In 90 patients, 57 (63%) were survivors and 33 (37%) nonsurvivors, and a total of 628 serial electrocardiograms, 1,565 hs-cTnT, and 1,559 NT-proBNP concentrations were assessed. Log-hs-cTnT was lower in survivors compared with nonsurvivors at day 1 (ß -0.93 [-1.37; -0.49], p <0.001) and did not change over time. Log-NT-proBNP did not differ at day 1 between both groups but decreased over time in the survivor group (ß -0.08 [-0.11; -0.04] p <0.001) compared with nonsurvivors. Many electrocardiographic abnormalities were present in the whole population, without significant differences between both groups. In conclusion, baseline hs-cTnT and change in NT-proBNP were strongly associated with mortality. Two-thirds of patients with COVID-19 showed electrocardiographic abnormalities. Our serial assessment suggests that myocardial injury is common in mechanically ventilated patients with COVID-19 and is associated with outcome.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , COVID-19/epidemiology , Humans , Natriuretic Peptide, Brain , Peptide Fragments , Prospective Studies , Respiration, Artificial , Troponin T
15.
Nuklearmedizin ; 61(1): 33-41, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34918332

ABSTRACT

PURPOSE: Resveratrol has shown promising anti-inflammatory effects in in vitro and animal studies. We aimed to investigate this effect on arterial inflammation in vivo. METHODS: This was an additional analysis of a double-blind randomized crossover trial which included eight male subjects with decreased insulin sensitivity who underwent an 18F-fluoroxyglucose (18F-FDG) PET/CT after 34 days of placebo and resveratrol treatment (150 mg/day). 18F-FDG uptake was analyzed in the carotid arteries and the aorta, adipose tissue regions, spleen, and bone marrow as measures for arterial and systemic inflammation. Maximum target-to-background ratios (TBRmax) were compared between resveratrol and placebo treatment with the non-parametric Wilcoxon signed-rank test. Median values are shown with their interquartile range. RESULTS: Arterial 18F-FDG uptake was non-significantly higher after resveratrol treatment (TBRmax all vessels 1.7 (1.6-1.7)) in comparison to placebo treatment (1.5 (1.4-1.6); p=0.050). Only in visceral adipose tissue, the increase in 18F-FDG uptake after resveratrol reached statistical significance (p=0.024). Furthermore, CRP-levels were not significantly affected by resveratrol treatment (p=0.091). CONCLUSIONS: Resveratrol failed to attenuate arterial or systemic inflammation as measured with 18F-FDG PET in subjects at risk of developing type 2 diabetes. However, validation of these findings in larger human studies is needed.


Subject(s)
Arteritis , Diabetes Mellitus, Type 2 , Arteritis/diagnostic imaging , Arteritis/drug therapy , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Fluorodeoxyglucose F18 , Humans , Inflammation/drug therapy , Male , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Resveratrol/therapeutic use
16.
Am J Cardiol ; 163: 25-31, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34763830

ABSTRACT

Various definitions of myocardial infarction type 5 after coronary artery bypass grafting (CABG) have been proposed (myocardial infarction [MI-5], also known as peri-procedural MI), using different biomarkers and different and arbitrary cut-off values. This meta-analysis aims to determine the expected release of high-sensitivity cardiac troponin T (hs-cTnT) after CABG in general and after uncomplicated surgery and off-pump CABG in particular. A systematic search was applied to 3 databases. Studies on CABG as a single intervention and reporting on postoperative hs-cTnT concentrations on at least 2 different time points were included. All data on hs-cTnT concentrations were extracted, and mean concentrations at various points in time were stratified. Eventually, 15 studies were included, encompassing 2,646 patients. Preoperative hs-cTnT was 17 ng/L (95% confidence interval [CI] 13 to 20 ng/L). Hs-cTnT peaked at 6 to 8 hours postoperatively (628 ng/L, 95% CI 400 to 856 ng/L; 45x upper reference limit [URL]) and was still increased after 48 hours. In addition, peak hs-cTnT concentration was 614 ng/L (95% CI 282 to 947 ng/L) in patients with a definite uncomplicated postoperative course (i.e., without MI). For patients after off-pump CABG compared to on-pump CABG, the mean peak hs-cTnT concentration was 186 ng/L (95% CI 172 to 200 ng/L, 13 × URL) versus 629 ng/L (95% CI 529 to 726 ng/L, 45 × URL), respectively. In conclusion, postoperative hs-cTnT concentrations surpass most of the currently defined cut-off values for MI-5, even in perceived uncomplicated surgery, suggesting thorough reassessment. Hs-cTnT release differences following on-pump CABG versus off-pump CABG were observed, implying the need for different cut-off values for different surgical strategies.


Subject(s)
Coronary Artery Bypass , Myocardial Infarction/diagnosis , Postoperative Complications/diagnosis , Troponin T/blood , Coronary Artery Bypass, Off-Pump , Humans , Myocardial Infarction/blood , Perioperative Period , Postoperative Complications/blood
17.
J Card Surg ; 37(1): 162-164, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34689381

ABSTRACT

In the past few years, many have disputed the optimal biomarker for confirming or ruling out a diagnosis of periprocedural myocardial infarction (PMI) and the optimal cut-off concentrations to apply. In this issue of the Journal of Cardiac Surgery, Niclauss et al. performed a retrospective analysis of CK-MB and high-sensitivity cardiac troponin T (hs-cTnT) dynamics and peak concentrations following different cardiac surgical interventions in 400 patients during a 2-year period in a single center. The authors found that CK-MB and hs-cTnT predict PMI with a comparable diagnostic accuracy and discriminatory power >95%. They also attempted to propose an improved, more sensitive threshold of hs-cTnT for PMI. Their findings could have implications for clinical practice, but more research is warranted to identify more appropriate cut-offs. This could include hs-cTnT release pattern, slope steepness, and changes. Ultimately, this could results in patient-specific model, able to predict expected and abnormal ranges of hs-cTnT release, enabling an improved and timely diagnosis of PMI.


Subject(s)
Myocardial Infarction , Troponin T , Biomarkers , Creatine Kinase, MB Form , Humans , Myocardial Infarction/diagnosis , Retrospective Studies
18.
Circulation ; 144(24): 1955-1972, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34898243

ABSTRACT

Serological assessment of cardiac troponins (cTn) is the gold standard to assess myocardial injury in clinical practice. A greater magnitude of acutely or chronically elevated cTn concentrations is associated with lower event-free survival in patients and the general population. Exercise training is known to improve cardiovascular function and promote longevity, but exercise can produce an acute rise in cTn concentrations, which may exceed the upper reference limit in a substantial number of individuals. Whether exercise-induced cTn elevations are attributable to a physiological or pathological response and if they are clinically relevant has been debated for decades. Thus far, exercise-induced cTn elevations have been viewed as the only benign form of cTn elevations. However, recent studies report intriguing findings that shed new light on the underlying mechanisms and clinical relevance of exercise-induced cTn elevations. We will review the biochemical characteristics of cTn assays, key factors determining the magnitude of postexercise cTn concentrations, the release kinetics, underlying mechanisms causing and contributing to exercise-induced cTn release, and the clinical relevance of exercise-induced cTn elevations. We will also explain the association with cardiac function, correlates with (subclinical) cardiovascular diseases and exercise-induced cTn elevations predictive value for future cardiovascular events. Last, we will provide recommendations for interpretation of these findings and provide direction for future research in this field.


Subject(s)
Cardiovascular Diseases/metabolism , Exercise , Troponin/metabolism , Humans , Kinetics
19.
Adv Exp Med Biol ; 1306: 41-59, 2021.
Article in English | MEDLINE | ID: mdl-33959905

ABSTRACT

Cardiac troponin T (cTnT) is a sensitive and specific biomarker for detecting cardiac muscle injury. Its concentration in blood can be significantly elevated outside the normal reference range under several pathophysiological conditions. The classical analytical method in routine clinical analysis to detect cTnT in serum or plasma is a single commercial immunoassay, which is designed to quantify the intact cTnT molecule. The targeted epitopes are located in the central region of the cTnT molecule. However, in blood cTnT exists in different biomolecular complexes and proteoforms: bound (to cardiac troponin subunits or to immunoglobulins) or unbound (as intact protein or as proteolytic proteoforms). While proteolysis is a principal posttranslational modification (PTM), other confirmed PTMs of the proteoforms include N-terminal initiator methionine removal, N-acetylation, O-phosphorylation, O-(N-acetyl)-glucosaminylation, N(ɛ)-(carboxymethyl)lysine modification and citrullination. The immunoassay probably detects several of those cTnT biomolecular complexes and proteoforms, as long as they have the centrally targeted epitopes in common. While analytical cTnT immunoreactivity has been studied predominantly in blood, it can also be detected in urine, although it is unclear in which proteoform cTnT immunoreactivity is present in urine. This review presents an overview of the current knowledge on the pathophysiological lifecycle of cTnT. It provides insight into the impact of PTMs, not only on the analytical immunoreactivity, but also on the excretion of cTnT in urine as one of the waste routes in that lifecycle. Accordingly, and after isolating the proteoforms from urine of patients suffering from proteinuria and acute myocardial infarction, the structures of some possible cTnT proteoforms are reconstructed using mass spectrometry and presented.


Subject(s)
Myocardial Infarction , Troponin T , Humans , Phosphorylation , Protein Processing, Post-Translational , Proteolysis , Troponin T/metabolism
20.
J Cardiovasc Magn Reson ; 23(1): 40, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33752696

ABSTRACT

BACKGROUND: Invasive coronary angiography (ICA) is still the reference test in suspected non-ST elevation myocardial infarction (NSTEMI), although a substantial number of patients do not have obstructive coronary artery disease (CAD). Early cardiovascular magnetic resonance (CMR) may be a useful gatekeeper for ICA in this setting. The main objective was to investigate the accuracy of CMR to detect obstructive CAD in NSTEMI. METHODS: This study is a sub-analysis of a randomized controlled trial investigating whether a non-invasive imaging-first strategy safely reduced the number of ICA compared to routine clinical care in suspected NSTEMI (acute chest pain, non-diagnostic electrocardiogram, high sensitivity troponin T > 14 ng/L), and included 51 patients who underwent CMR prior to ICA. A stepwise approach was used to assess the diagnostic accuracy of CMR to detect (1) obstructive CAD (diameter stenosis ≥ 70% by ICA) and (2) an adjudicated final diagnosis of acute coronary syndrome (ACS). First, in all patients the combination of cine, T2-weighted and late gadolinium enhancement (LGE) imaging was evaluated for the presence of abnormalities consistent with a coronary etiology in any sequence. Hereafter and only when the scan was normal or equivocal, adenosine stress-perfusion CMR was added. RESULTS: Of 51 patients included (63 ± 10 years, 51% male), 34 (67%) had obstructive CAD by ICA. The sensitivity, specificity and overall accuracy of the first step to diagnose obstructive CAD were 79%, 71% and 77%, respectively. Additional vasodilator stress-perfusion CMR was performed in 19 patients and combined with step one resulted in an overall sensitivity of 97%, specificity of 65% and accuracy of 86%. Of the remaining 17 patients with non-obstructive CAD, 4 (24%) had evidence for a myocardial infarction on LGE, explaining the modest specificity. The sensitivity, specificity and overall accuracy to diagnose ACS (n = 43) were 88%, 88% and 88%, respectively. CONCLUSION: CMR accurately detects obstructive CAD and ACS in suspected NSTEMI. Non-obstructive CAD is common with CMR still identifying an infarction in almost one-quarter of patients. CMR should be considered as an early diagnostic approach in suspected NSTEMI. TRIAL REGISTRATION: The CARMENTA trial has been registered at ClinicalTrials.gov with identifier NCT01559467.


Subject(s)
Acute Coronary Syndrome/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Magnetic Resonance Imaging, Cine , Non-ST Elevated Myocardial Infarction/diagnostic imaging , Adenosine/administration & dosage , Aged , Female , Humans , Male , Middle Aged , Myocardial Perfusion Imaging , Predictive Value of Tests , Reproducibility of Results , Vasodilator Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL