Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
J Neurochem ; 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38430009

Reductionistic research on depressive disorders has been hampered by the limitations of animal models. Recently, it has been hypothesized that neuroinflammation is a key player in depressive disorders. The Wistar-Kyoto (WKY) rat is an often-used animal model of depression, but no information so far exists on its neuroinflammatory profile. As such, we compared male young adult WKY rats to Wistar (WS) controls, with regard to both behavioral performance and brain levels of key neuroinflammatory markers. We first assessed anxiety- and depression-like behaviors in a battery consisting of the Elevated Plus Maze (EPM), the Novelty Suppressed Feeding (NSFT), Open Field (OFT), Social Interaction (SIT), Forced Swim (FST), Sucrose Preference (SPT), and Splash tests (ST). We found that WKY rats displayed increased NSFT feeding latency, decreased OFT center zone permanence, decreased EPM open arm permanence, decreased SIT interaction time, and increased immobility in the FST. However, WKY rats also evidenced marked hypolocomotion, which is likely to confound performance in such tests. Interestingly, WKY rats performed similarly, or even above, to WS levels in the SPT and ST, in which altered locomotion is not a significant confound. In a separate cohort, we assessed prefrontal cortex (PFC), hippocampus and amygdala levels of markers of astrocytic (GFAP, S100A10) and microglial (Iba1, CD86, Ym1) activation status, as well as of three key proinflammatory cytokines (IL-1ß, IL-6, TNF-α). There were no significant differences between strains in any of these markers, in any of the regions assessed. Overall, results highlight that behavioral data obtained with WKY rats as a model of depression must be carefully interpreted, considering the marked locomotor activity deficits displayed. Furthermore, our data suggest that, despite WKY rats replicating many depression-associated neurobiological alterations, as shown by others, this is not the case for neuroinflammation-related alterations, thus representing a novel limitation of this model.

2.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article En | MEDLINE | ID: mdl-38003438

Rett Syndrome is an X-linked neurodevelopmental disorder (RTT; OMIM#312750) associated to MECP2 mutations. MeCP2 dysfunction is seen as one cause for the deficiencies found in brain-derived neurotrophic factor (BDNF) signaling, since BDNF is one of the genes under MeCP2 jurisdiction. BDNF signaling is also dependent on the proper function of the adenosinergic system. Indeed, both BDNF signaling and the adenosinergic system are altered in Mecp2-null mice (Mecp2-/y), a representative model of severe manifestation of RTT. Considering that symptoms severity largely differs among RTT patients, we set out to investigate the BDNF and ADO signaling modifications in Mecp2 heterozygous female mice (Mecp2+/-) presenting a less severe phenotype. Symptomatic Mecp2+/- mice have lower BDNF levels in the cortex and hippocampus. This is accompanied by a loss of BDNF-induced facilitation of hippocampal long-term potentiation (LTP), which could be restored upon selective activation of adenosine A2A receptors (A2AR). While no differences were observed in the amount of adenosine in the cortex and hippocampus of Mecp2+/- mice compared with healthy littermates, the density of the A1R and A2AR subtype receptors was, respectively, upregulated and downregulated in the hippocampus. Data suggest that significant changes in BDNF and adenosine signaling pathways are present in an RTT model with a milder disease phenotype: Mecp2+/- female animals. These features strengthen the theory that boosting adenosinergic activity may be a valid therapeutic strategy for RTT patients, regardless of their genetic penetrance.


Brain-Derived Neurotrophic Factor , Rett Syndrome , Animals , Female , Humans , Mice , Adenosine/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cross-Sectional Studies , Disease Models, Animal , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice, Knockout , Rett Syndrome/metabolism
3.
Neuropharmacology ; 214: 109155, 2022 08 15.
Article En | MEDLINE | ID: mdl-35660545

Chronic adolescent cannabinoid receptor agonist exposure has been shown to lead to persistent increases in depressive-like behaviors. This has been a key obstacle to the development of cannabinoid-based therapeutics. However, most of the published work has been performed with only three compounds, namely Δ9-tetrahydrocannabinol, CP55,940 and WIN55,212-2. Hypothesizing that different compounds may lead to distinct outcomes, we herein used the highly potent CB1R/CB2R full agonist HU-210, and first aimed at replicating cannabinoid-induced long-lasting effects, by exposing adolescent female Sprague-Dawley rats to increasing doses of HU-210, for 11 days and testing them at adulthood, after a 30-day drug washout. Surprisingly, HU-210 did not significantly impact adult anxious- or depressive-like behaviors. We then tested whether chronic adolescent HU-210 treatment resulted in short-term (24h) alterations in depressive-like behavior. Remarkably, HU-210 treatment simultaneously induced marked antidepressant- and prodepressant-like responses, in the modified forced swim (mFST) and sucrose preference tests (SPT), respectively. Hypothesizing that mFST results were a misleading artifact of HU-210-induced behavioral hyperreactivity to stress, we assessed plasmatic noradrenaline and corticosterone levels, under basal conditions and following an acute swim-stress episode. Notably, we found that while HU-210 did not alter basal noradrenaline or corticosterone levels, it greatly augmented the stress-induced increase in both. Our results show that, contrary to previously studied cannabinoid receptor agonists, HU-210 does not induce persisting depressive-like alterations, despite inducing marked short-term increases in stress-induced reactivity. By showing that not all cannabinoid receptor agonists may induce long-term negative effects, these results hold significant relevance for the development of cannabinoid-based therapeutics.


Cannabinoids , Dronabinol , Animals , Cannabinoid Receptor Agonists/pharmacology , Corticosterone , Dronabinol/analogs & derivatives , Dronabinol/pharmacology , Female , Norepinephrine , Rats , Rats, Sprague-Dawley
4.
Neurobiol Dis ; 163: 105603, 2022 02.
Article En | MEDLINE | ID: mdl-34954322

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Hippocampus/metabolism , Neurofibrillary Tangles/metabolism , Septins/metabolism , Synapses/metabolism , Animals , Autophagy/physiology , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation , Synapses/pathology
5.
Curr Issues Mol Biol ; 43(3): 2305-2319, 2021 Dec 18.
Article En | MEDLINE | ID: mdl-34940136

The increasing consumption of sugar and fat seen over the last decades and the consequent overweight and obesity, were recently linked with a deleterious effect on cognition and synaptic function. A major question, which remains to be clarified, is whether obesity in the elderly is an additional risk factor for cognitive impairment. We aimed at unravelling the impact of a chronic high caloric diet (HCD) on memory performance and synaptic plasticity in aged rats. Male rats were kept on an HCD or a standard diet (control) from 1 to 24 months of age. The results showed that under an HCD, aged rats were obese and displayed significant long-term recognition memory impairment when compared to age-matched controls. Ex vivo synaptic plasticity recorded from hippocampal slices from HCD-fed aged rats revealed a reduction in the magnitude of long-term potentiation, accompanied by a decrease in the levels of the brain-derived neurotrophic factor receptors TrkB full-length (TrkB-FL). No alterations in neurogenesis were observed, as quantified by the density of immature doublecortin-positive neurons in the hippocampal dentate gyrus. This study highlights that obesity induced by a chronic HCD exacerbates age-associated cognitive decline, likely due to impaired synaptic plasticity, which might be associated with deficits in TrkB-FL signaling.


Diet , Memory Disorders/etiology , Neuronal Plasticity , Age Factors , Animals , Biomarkers , Brain/metabolism , Disease Models, Animal , Eating , Immunohistochemistry , Male , Rats
6.
Pharmacol Res ; 162: 105281, 2020 12.
Article En | MEDLINE | ID: mdl-33161136

Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75NTR). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases. Multiple strategies targeting this neurotrophin have been tested; most have found obstacles that ultimately hampered their effectiveness. This review focuses on the involvement of BDNF and its receptors in the pathophysiology of Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Rett Syndrome (RTT). We describe the known mechanisms leading to the impairment of BDNF/TrkB signalling in these disorders. Such mechanistic insight highlights how BDNF signalling compromise can take various shapes, nearly disease-specific. Therefore, BDNF-based therapeutic strategies must be specifically tailored and are more likely to succeed if a combination of resources is employed.


Brain-Derived Neurotrophic Factor , Nervous System Diseases/therapy , Rare Diseases/therapy , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Humans , Nervous System Diseases/metabolism , Rare Diseases/metabolism , Signal Transduction
7.
Neurobiol Dis ; 145: 105043, 2020 11.
Article En | MEDLINE | ID: mdl-32798727

Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.


Brain-Derived Neurotrophic Factor/metabolism , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Rett Syndrome/metabolism , Signal Transduction/physiology , Animals , Hippocampus/metabolism , Methyl-CpG-Binding Protein 2 , Mice , Mice, Knockout , Receptor, trkB/metabolism , Rett Syndrome/genetics
8.
Front Neurosci ; 14: 614, 2020.
Article En | MEDLINE | ID: mdl-32625056

Microglial cells have emerged as crucial players in synaptic plasticity during development and adulthood, and also in neurodegenerative and neuroinflammatory conditions. Here we found that decreased levels of Sirtuin 2 (Sirt2) deacetylase in microglia affects hippocampal synaptic plasticity under inflammatory conditions. The results show that long-term potentiation (LTP) magnitude recorded from hippocampal slices of wild type mice does not differ between those exposed to lipopolysaccharide (LPS), a pro-inflammatory stimulus, or BSA. However, LTP recorded from hippocampal slices of microglial-specific Sirt2 deficient (Sirt2-) mice was significantly impaired by LPS. Importantly, LTP values were restored by memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors. These results indicate that microglial Sirt2 prevents NMDA-mediated excitotoxicity in hippocampal slices in response to an inflammatory signal such as LPS. Overall, our data suggest a key-protective role for microglial Sirt2 in mnesic deficits associated with neuroinflammation.

9.
Neuroscience ; 439: 146-152, 2020 07 15.
Article En | MEDLINE | ID: mdl-31229630

The investigation on neurotransmission function during normal and pathologic development is a pivotal component needed to understand the basic mechanisms underlying neurodevelopmental pathologies. To study these diseases, many animal models have been generated which allowed to face the limited availability of human tissues and, as a consequence, most of the electrophysiology has been performed on these models of diseases. On the other hand, the technique of membrane microtransplantation in Xenopus oocytes allows the study of human functional neurotransmitter receptors thanks to the use of tissues from autopsies or surgeries, even in quantities that would not permit other kinds of functional studies. In this short article, we intend to underline how this technique is well-fit for the study of rare diseases by characterizing the electrophysiological properties of GABAA and AMPA receptors in Rett syndrome. For our purposes, we used both tissues from Rett syndrome patients and Mecp2-null mice, a well validated murine model of the same disease, in order to strengthen the solidity of our results through the comparison of the two. Our findings retrace previous results and, in the light of this, further argue in favor of Prof. Miledi's technique of membrane microtransplantation that proves itself a very useful tool of investigation in the field of neurophysiology. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Rett Syndrome , Animals , Humans , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Knockout , Rare Diseases , Synaptic Transmission
10.
Front Neurosci ; 13: 680, 2019.
Article En | MEDLINE | ID: mdl-31333401

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.

11.
J Neurosci ; 36(48): 12117-12128, 2016 11 30.
Article En | MEDLINE | ID: mdl-27903722

Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adkfl/fl mice. These AdkΔbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A1 receptor (A1R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A2A receptor (A2AR) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A2A receptor activity in AdkΔbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A2AR activity therapeutically can attenuate neurological symptoms in ADK deficiency. SIGNIFICANCE STATEMENT: A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy, seizures, and severe cognitive impairment. To model and understand the neurological phenotype of the human mutation, we generated a new conditional knock-out mouse with a brain-specific deletion of Adk (AdkΔbrain). Similar to ADK-deficient patients, AdkΔbrain mice develop seizures and cognitive deficits. We identified increased basal synaptic transmission and enhanced adenosine A2A receptor (A2AR)-dependent synaptic plasticity as the underlying mechanisms that govern these phenotypes. Our data show that neurological phenotypes in ADK-deficient patients are intrinsic to ADK deficiency in the brain and that blocking A2AR activity therapeutically can attenuate neurological symptoms in ADK deficiency.


Adenosine Kinase/deficiency , Adenosine/metabolism , Brain/physiopathology , Neuronal Plasticity , Receptor, Adenosine A2A/metabolism , Synaptic Transmission , Adenosine Kinase/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurotransmitter Agents/metabolism , Synapses/enzymology
12.
Neuropharmacology ; 104: 226-42, 2016 05.
Article En | MEDLINE | ID: mdl-26577017

In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Adenosine/metabolism , Central Nervous System/metabolism , Guanosine/metabolism , Neurons/metabolism , Peripheral Nervous System/metabolism , Receptors, Purinergic P1/metabolism , Regeneration , Animals , Axon Guidance , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Encephalitis/metabolism , Humans , Neurogenesis , Neuroglia/metabolism , Oxidative Stress , Synapses/metabolism
...