ABSTRACT
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful ectoparasites affecting bovines worldwide. It represents a major threat to livestock industry due to the economic losses caused and diseases associated with these ticks. The most important tick control strategy has been the use of ixodicides, resulting in chemically resistant tick populations. It is necessary to understand the mechanisms that result in resistance so as to create new strategies increasing the lifespan of ixodicides or finding alternative targets to produce new acaricides. In this paper, in order to obtain an insight into the mechanisms that govern ixodicides resistance, we will compare the hemolymph proteome of two tick R. microplus strains, one susceptible (MJ) and one resistant (SA) to ixodicides, using HPLC and 2D electrophoresis. Significant differences were found in protein content between strains using HPLC. 2D electrophoresis revealed that 68 hemolymph protein spots were common between strains; however, 26 spots were unique to the susceptible strain MJ and 5 to the resistant strain SA. The most distinctive protein spots on the preparative gels were selected for further analyses. Nine protein spots were identified by mass fingerprinting, revealing proteins that may have a role in the ixodicides resistance or susceptibility. In this paper, we present the tick hemolymph proteome revealing a set of proteins which suggest a possible role in tick detoxification.
Subject(s)
Acaricides/pharmacology , Hemolymph/metabolism , Proteomics , Rhipicephalus/enzymology , Animals , Cattle , Cattle Diseases , Female , Proteome , Rhipicephalus/drug effectsABSTRACT
Enterococcus spp. are Gram-positive lactic acid-producing bacteria found in the intestinal tracts of animals, like mammals, birds, and arthropods. Enterococcus spp. may cause oportunistic infections in vertebrate and invertebrate hosts. We report here the draft genome sequence of Enterococcus casseliflavus PAVET15 containing 3,722,480 bp, with 80 contigs, an N50 of 179,476 bp, and 41.93% G+C content.
ABSTRACT
Paenibacillus larvae strain MEX14 is a facultative anaerobic endospore-forming bacterium that infects Apis mellifera larvae. Strain MEX14 was isolated from domestic bee larvae collected in a backyard in Mexico City. The estimated genome size was determined to be 4.18 Mb, and it harbors 4,806 protein coding genes (CDSs).
ABSTRACT
In the present work, we evaluate in vivo the activity of carboxylesterase of Fasciola hepatica exposed to triclabendazole. We observed a statistically significant increase in enzyme activity at 24 and 48 h post treatment (P<0.01 and P<0.001, respectively). The zymogram of cytosolic fractions identified a protein of 170 kDa containing the carboxylesterase activity. The densitograms of the zymograms confirmed the phenomenon of enzyme induction under the experimental conditions of the assay. These results provide not only the understanding of the importance of this metabolic pathway in flukes but carboxylesterase would also be an enzyme that could participate more actively in the development of anthelmintic resistance at TCBZ.
Subject(s)
Anthelmintics/therapeutic use , Benzimidazoles/therapeutic use , Carboxylesterase/metabolism , Fasciola hepatica/drug effects , Fasciola hepatica/enzymology , Fascioliasis/drug therapy , Sheep Diseases/drug therapy , Animals , Anthelmintics/metabolism , Anthelmintics/pharmacology , Benzimidazoles/pharmacology , Carboxylesterase/drug effects , Fascioliasis/parasitology , Sheep , Sheep Diseases/parasitology , Sheep, Domestic , Triclabendazole , Up-RegulationABSTRACT
Different laboratory cultures of the acarine tick Rhipicephalus (Boophilus) microplus (Canestrini, 1888) (Ixodida: Ixodidae) were infested by small Megaselia scalaris (Loew, 1866) (Diptera: Phoridae) flies. Larvae of this species exhibited opportunistic parasitism predominantly on engorged female ticks, causing severe damage to their cuticle through which the flies were able to reach R. microplus internal organs, on which they fed until developing into pupae in the tick's remains. The flies were kept by continuous propagation on fresh ticks over six generations during which the same parasitoid behaviour was observed. Here we report on an ixodid tick laboratory culture used for rearing M. scalaris.