Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 14: 1227349, 2023.
Article in English | MEDLINE | ID: mdl-37575935

ABSTRACT

Cold storage is widely used to extend the postharvest life of most horticultural crops, including tomatoes, but this practice triggers cold stress and leads to the development of undesirable chilling injury (CI) symptoms. The underlying mechanisms of cold stress response and CI development in fruits remain unclear as they are often intermingled with fruit ripening changes. To gain insight into cold responses in fruits, we examined the effect of the potent ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) on fruit ripening, CI occurrence and gene expression in mature green tomatoes during storage at 20°C and 5°C. 1-MCP treatments effectively inhibited ethylene production and peel color changes during storage at 20°C. Storage at 5°C also inhibited both ethylene production and peel color change; during rewarming at 20°C, 1-MCP treatments inhibited peel color change but failed to inhibit ethylene production. Furthermore, fruits stored at 5°C for 14 d developed CI symptoms (surface pitting and decay) during the rewarming period at 20°C regardless of 1-MCP treatment. Subsequent RNA-Seq analysis revealed that cold stress triggers a large-scale transcriptomic adjustment, as noticeably more genes were differentially expressed at 5°C (8,406) than at 20°C (4,814). More importantly, we have found some important divergences among genes involved in fruit ripening (up- or down-regulated at 20°C; inhibited by 1-MCP treatment) and those involved in cold stress (up- or down-regulated at 5°C; unaffected by 1-MCP treatment). Transcriptomic adjustments unique to cold stress response were associated with ribosome biogenesis, NcRNA metabolism, DNA methylation, chromatin formation/remodeling, and alternative splicing events. These data should foster further research into cold stress response mechanisms in fruits with the ultimate aim of improving tolerance to low temperature and reduction of CI symptoms during cold storage.

3.
Front Plant Sci ; 14: 1205816, 2023.
Article in English | MEDLINE | ID: mdl-37416886

ABSTRACT

In flowering plants, pollination, pollen tube growth, and fertilization are regarded as the first hierarchical processes of producing offspring. However, their independent contributions to fruit set and development remain unclear. In this study, we examined the effect of three different types of pollen, intact pollen (IP), soft X-ray-treated pollen (XP) and dead pollen (DP), on pollen tube growth, fruit development and gene expression in "Micro-Tom" tomato. Normal germination and pollen tube growth were observed in flowers pollinated with IP; pollen tubes started to penetrate the ovary at 9 h after pollination, and full penetration was achieved after 24 h (IP24h), resulting in ~94% fruit set. At earlier time points (3 and 6 h after pollination; IP3h and IP6h, respectively), pollen tubes were still in the style, and no fruit set was observed. Flowers pollinated with XP followed by style removal after 24 h (XP24h) also demonstrated regular pollen tubes and produced parthenocarpic fruits with ~78% fruit set. As expected, DP could not germinate and failed to activate fruit formation. Histological analysis of the ovary at 2 days after anthesis (DAA) revealed that IP and XP comparably increased cell layers and cell size; however, mature fruits derived from XP were significantly smaller than those derived from IP. Furthermore, there was a high correlation between seed number and fruit size in fruit derived from IP, illustrating the crucial role of fertilization in the latter stages of fruit development. RNA-Seq analysis was carried out in ovaries derived from IP6h, IP24h, XP24h and DP24h in comparison with emasculated and unpollinated ovaries (E) at 2 DAA. The results revealed that 65 genes were differentially expressed (DE) in IP6h ovaries; these genes were closely associated with cell cycle dormancy release pathways. Conversely, 5062 and 4383 DE genes were obtained in IP24h and XP24h ovaries, respectively; top enriched terms were mostly associated with cell division and expansion in addition to the 'plant hormone signal transduction' pathway. These findings indicate that full penetration of pollen tubes can initiate fruit set and development independently of fertilization, most likely by activating the expression of genes regulating cell division and expansion.

4.
Front Plant Sci ; 13: 918226, 2022.
Article in English | MEDLINE | ID: mdl-35909736

ABSTRACT

Peel degreening is the most conspicuous aspect of fruit ripening in many citrus fruits because of its importance for marketability. In this study, peel degreening in response to propylene (an ethylene analog) and at varying storage temperatures was characterized in Satsuma mandarin (Citrus unshiu Marc.) fruit. Propylene treatment triggered rapid peel degreening (within 4-6 days), indicated by an increase in the citrus color index (CCI) and chlorophyll loss. Peel degreening was also observed in fruit at 10°C and 15°C after 28-42 days, with gradual CCI increase and chlorophyll reduction. However, fruit at 5°C, 20°C, and 25°C remained green, and no substantial changes in peel CCI and chlorophyll content were recorded during the 42-day storage duration. The transcriptomes of peels of fruit treated with propylene for 4 days and those stored at varying temperatures for 28 days were then analyzed by RNA-Seq. We identified three categories of differentially expressed genes that were regulated by (i) propylene (and by analogy, ethylene) alone, (ii) low temperature (5°C, 10°C, or 15°C vs. 25°C) alone, and (iii) either propylene or low temperature. Gene-encoding proteins associated with chlorophyll degradation (such as CuSGR1, CuNOL, CuACD2, CuCAB2, and CuLHCB2) and a transcription factor (CuERF114) were differentially expressed by propylene or low temperature. To further examine temperature-induced pathways, we also monitored gene expression during on-tree fruit maturation vs. postharvest. The onset of on-tree peel degreening coincided with autumnal drops in field temperatures, and it was accompanied by differential expression of low temperature-regulated genes. On the contrary, genes that were exclusively regulated by propylene (such as CuCOPT1 and CuPOX-A2) displayed insignificant expression changes during on-tree peel degreening. These findings indicate that low temperatures could be involved in the fruit ripening-related peel degreening independently of ethylene.

5.
J Exp Bot ; 71(16): 4778-4796, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32374848

ABSTRACT

Peel degreening is an important aspect of fruit ripening in many citrus fruit, and previous studies have shown that it can be advanced by ethylene treatment or by low-temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To determine how natural peel degreening is regulated in lemon fruit (Citrus limon), we studied transcriptome and physiochemical changes in the flavedo in response to ethylene treatment and low temperatures. Treatment with ethylene induced rapid peel degreening, which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25 ºC, moderately low storage temperatures of 5-20 °C also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. Peel degreening of fruit on trees occurred in association with drops in ambient temperature, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit.


Subject(s)
Citrus , Fruit , Citrus/genetics , Citrus/metabolism , Ethylenes , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Temperature
6.
Front Plant Sci ; 10: 888, 2019.
Article in English | MEDLINE | ID: mdl-31333713

ABSTRACT

Fruit ripening in response to propylene (an ethylene analog), 1-methylcyclopropene (1-MCP, an ethylene action inhibitor), and low temperature (5°C) treatments was characterized in "Kosui" kiwifruit (Actinidia rufa × A. chinensis). Propylene treatment induced ethylene production, with increased expression levels of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 1 (AcACS1) and ACC oxidase 2 (AcACO2), and rapid fruit softening together with increased expression levels of polygalacturonase (AcPG) and expansin 1 (AcEXP1) within 5 days (d). Fruit soluble solids concentration (SSC) and contents of sucrose, glucose, and fructose together with the expression levels of ß-amylase 1 (Acß-AMY1), Acß-AMY2, and invertase (AcINV3-1) increased rapidly after 5 d exposure to propylene. Furthermore, propylene exposure for 5 d was sufficient to induce the production of key aroma volatile compounds, ethyl- and methyl butanoate, accompanied with increased expression levels of alcohol acyl transferase (AcAAT). Application of 1-MCP at the start of the experiment, followed by continuous exposure to propylene, significantly delayed fruit softening, changes in SSC and sugars, and strongly suppressed the production of ethylene, aroma volatiles, and expression of associated genes. During storage, fruit softening, SSC and sugar increase, and increased expression of genes associated with cell wall modification and carbohydrate metabolism were registered without detectable ethylene production; however, these changes occurred faster at 5°C compared to 22°C. Interestingly, ethyl and methyl butanoate as well as AcAAT expression were undetectable in kiwifruit during storage, while they were rescued by post-storage propylene exposure, indicating that the production of aroma volatile compounds is strongly ethylene-dependent. Transcript levels of a NAC-related transcription factor (TF), AcNAC3, increased in response to both propylene and low temperature treatments, while AcNAC5 was exclusively up-regulated by propylene. By contrast, transcript levels of a MADS-box TF, AcMADS2, exclusively increased in response to low temperature. The above findings indicate that kiwifruit ripening is inducible by either ethylene or low temperature signals. However, fruit ripened by low temperature were deficient in ethylene-dependent aroma volatiles, suggesting that ethylene signaling is non-functional during low temperature-modulated ripening in kiwifruit. These data provide further evidence that ethylene-dependent and low temperature-modulated ripening in kiwifruit involve different regulatory mechanisms.

7.
BMC Plant Biol ; 18(1): 47, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29562897

ABSTRACT

BACKGROUND: Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. RESULTS: To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acß-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acß-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acß-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable endogenous ethylene production, and coincided with increased expression of low temperature-responsive DEGs as well as the decrease in environmental temperature. CONCLUSIONS: These results indicate that kiwifruit possess both ethylene-dependent and low temperature-modulated ripening mechanisms that are distinct and independent of each other. The current work provides a foundation for elaborating the control of these two ripening mechanisms in kiwifruit.


Subject(s)
Actinidia/genetics , Actinidia/metabolism , Ethylenes/metabolism , Fruit/genetics , Fruit/metabolism , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...