Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Evolution ; 76(7): 1512-1528, 2022 07.
Article in English | MEDLINE | ID: mdl-35665925

ABSTRACT

To what extent is evolution repeatable? Little is known about whether the evolution of hybrids is more (or less) repeatable than that of nonhybrids. We used field experimental evolution in annual sunflowers (Helianthus) in Texas to ask the extent to which hybrid evolution is repeatable across environments compared to nonhybrid controls. We created hybrids between Helianthus annuus (L.) and H. debilis (Nutt.) and grew plots of both hybrids and nonhybrid controls through eight generations at three sites in Texas. We collected seeds from each generation and grew each generation × treatment × home site combination at two final common gardens. We estimated the strength and direction of evolution in terms of fitness and 24 traits, tested for repeated versus nonrepeated evolution, and assessed overall phenotypic evolution across lineages and in relation to a locally adapted phenotype. Hybrids consistently evolved higher fitness over time, while controls did not, although trait evolution varied in strength across home sites. Repeated evolution was more evident in hybrids versus nonhybrid controls, and hybrid evolution was often in the direction of the locally adapted phenotype. Our findings have implications for both the nature of repeatability in evolution and the contribution of hybridization to evolution across environmental contexts.


Subject(s)
Helianthus , Adaptation, Physiological , Helianthus/genetics , Hybridization, Genetic , Phenotype , Texas
2.
Appl Plant Sci ; 10(2): e11463, 2022.
Article in English | MEDLINE | ID: mdl-35495193

ABSTRACT

Dispersal of gametophytes is critical for land plant survivorship and reproduction. It defines potential colonization and geographical distribution as well as genetic mixing and evolution. C. T. Ingold's classic works on Spore Discharge in Land Plants and Spore Liberation review mechanisms for spore release and dispersal based on real-time observations, basic histology, and light microscopy. Many mechanisms underlying spore liberation are explosive and have evolved independently multiple times. These mechanisms involve physiological processes such as water gain and loss, coupled with structural features using different plant tissues. Here we review how high-speed video and analyses of ultrastructure have defined new biomechanical mechanisms for the dispersal of gametophytes through the dissemination of haploid diaspores, including spores, pollen, and asexual reproductive propagules. This comparative review highlights the diversity and importance of rapid movements in plants for dispersing gametophytes and considerations for using combinations of high-speed video methods and microscopic techniques to understand these dispersal movements. A deeper understanding of these mechanisms is crucial not only for understanding gametophyte ecology but also for applied engineering and biomimetic applications used in human technologies.

3.
Evolution ; 75(8): 1966-1982, 2021 08.
Article in English | MEDLINE | ID: mdl-34156712

ABSTRACT

Hybridization has experimental and observational ties to evolutionary processes and outcomes such as adaptation, speciation, and radiation. Although it has been hypothesized that hybridization and diversification are positively correlated, this idea remains largely untested empirically, and hybridization can also potentially reduce diversity. Here, we use a hybridization database on 170 seed plant families, life history information, and a time-calibrated phylogeny to test for phylogenetically-corrected associations between hybridization and diversification rates, while also taking into account life-history traits that may be correlated with both processes. We use three methods to estimate diversification rates and two metrics of hybridization. Although hybridization explains only a small amount of overall variation in diversification rates, we show that diversification and hybridization are sometimes positively correlated, although the effect sizes are very small. Moreover, the relationship remains detectable when incorporating the correlations between diversification and two other life history characteristics, perenniality and woodiness. We discuss potential mechanisms for this association under four different scenarios: hybridization may drive diversification, diversification may drive hybridization, both hybridization and diversification may jointly be driven by other factors, or, as an alternative, that there is in fact no relationship between the two. We suggest future studies to disentangle the causal structure.


Subject(s)
Biological Evolution , Genetic Speciation , Adaptation, Physiological , Biodiversity , Humans , Hybridization, Genetic , Phylogeny
4.
Mol Ecol ; 30(23): 6229-6245, 2021 12.
Article in English | MEDLINE | ID: mdl-34080243

ABSTRACT

The origins of geographic races in wide-ranging species are poorly understood. In Texas, the texanus subspecies of Helianthus annuus has long been thought to have acquired its defining phenotypic traits via introgression from a local congener, H. debilis, but previous tests of this hypothesis were inconclusive. Here, we explore the origins of H. a. texanus using whole genome sequencing data from across the entire range of H. annuus and possible donor species, as well as phenotypic data from a common garden study. We found that although it is morphologically convergent with H. debilis, H. a. texanus has conflicting signals of introgression. Genome wide tests (Patterson's D and TreeMix) only found evidence of introgression from H. argophyllus (sister species to H. annuus and also sympatric), but not H. debilis, with the exception of one individual of 109 analysed. We further scanned the genome for localized signals of introgression using PCAdmix and found minimal but nonzero introgression from H. debilis and significant introgression from H. argophyllus in some populations. Given the paucity of introgression from H. debilis, we argue that the morphological convergence observed in Texas is probably from standing genetic variation. We also found that genomic differentiation in H. a. texanus is mostly driven by large segregating inversions, several of which have signatures of natural selection based on haplotype frequencies.


Subject(s)
Helianthus , Genomics , Helianthus/genetics , Hybridization, Genetic , Phenotype , Selection, Genetic
5.
Evol Appl ; 14(5): 1328-1342, 2021 May.
Article in English | MEDLINE | ID: mdl-34025771

ABSTRACT

Abiotic and biotic heterogeneity result in divergent patterns of natural selection in nature, with important consequences for fundamental evolutionary processes including local adaptation, speciation, and diversification. However, increasing amounts of the global terrestrial surface are homogenized by agriculture (which covers nearly 50% of terrestrial vegetated land surface) and other anthropogenic activities. Agricultural intensification leads to highly simplified biotic communities for many taxa, which may alter natural selection through biotic selective agents. In particular, the presence of crops may alter selection on traits of closely related wild relatives via shared mutualists and antagonists such as pollinators and herbivores. We asked how the presence of crop sunflowers (Helianthus annuus) alters natural selection on reproductive traits of wild sunflowers (Helianthus annuus texanus). Across two years and multiple sites, we planted replicated paired populations of wild H. a. texanus bordering sunflower crop fields versus approximately 2.5 km away. We measured fitness, floral traits, and interactions of the plants with insect pollinators and seed predators. We found limited evidence that proximity to crop sunflowers altered selection on individual traits, as total or direct selection differed by proximity for only three of eleven traits: ray length (a marginally significant effect), Isophrictis (Gelechiidae, moth) attack, and Neolasioptera (Cecidomyiidae, midge) attack. Direct (but not total) selection was significantly more heterogenous far from crop sunflowers relative to near crop sunflowers. Both mutualist pollinators and antagonist seed predators mediated differences in selection in some population-pairs near versus far from crop sunflowers. Here, we demonstrate that agriculture can influence the evolution of wild species via altered selection arising from shared biotic interactions, complementing previously demonstrated evolutionary effects via hybridization.

6.
Evol Lett ; 3(6): 570-585, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31867119

ABSTRACT

Hybridization is a biological phenomenon increasingly recognized as an important evolutionary process in both plants and animals, as it is linked to speciation, radiation, extinction, range expansion and invasion, and allows for increased trait diversity in agricultural and horticultural systems. Estimates of hybridization frequency vary across taxonomic groups, but causes of this variation are unknown. Here, we ask on a global scale whether hybridization is linked to any of 11 traits related to plant life history, reproduction, genetic predisposition, and environment or opportunity. Given that hybridization is not evenly distributed across the plant tree of life, we use phylogenetic generalized least squares regression models and phylogenetic path analysis to detect statistical associations between hybridization and plant traits at both the family and genus levels. We find that perenniality and woodiness are each weakly associated with an increased frequency of hybridization in univariate analyses, but path analysis suggests that the direct linkage is between perenniality and increased hybridization (with woodiness having only an indirect relationship with hybridization via perenniality). Weak associations between higher rates of hybridization and higher outcrossing rates, abiotic pollination syndromes, vegetative reproductive modes, larger genomes, and less variable genome sizes are detectable in some cases but not others. We argue that correlational evidence at the global scale, such as that presented here, provides a robust framework for forming hypotheses to examine and test drivers of hybridization at a more mechanistic level.

7.
Sci Rep ; 9(1): 6746, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043692

ABSTRACT

Hybridization is a common phenomenon, yet its evolutionary outcomes remain debated. Here, we ask whether hybridization can speed adaptive evolution using resynthesized hybrids between two species of Texas sunflowers (Helianthus annuus and H. debilis) that form a natural hybrid in the wild (H. annuus ssp. texanus). We established separate control and hybrid populations and allowed them to evolve naturally in a field evolutionary experiment. In a final common-garden, we measured fitness and a suite of key traits for these lineages. We show that hybrid fitness evolved in just seven generations, with fitness of the hybrid lines exceeding that of the controls by 14% and 51% by the end of the experiment, though only the latter represents a significant increase. More traits evolved significantly in hybrids relative to controls, and hybrid evolution was faster for most traits. Some traits in both hybrid and control lineages evolved in an adaptive manner consistent with the direction of phenotypic selection. These findings show a causal pathway from hybridization to rapid adaptation and suggest an explanation for the frequently noted association between hybridization and adaptive radiation, range expansion, and invasion.


Subject(s)
Biological Evolution , Hybridization, Genetic , Plants/genetics , Selection, Genetic , Genetic Fitness , Phenotype , Quantitative Trait, Heritable
8.
Ecol Lett ; 22(6): 987-998, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30912262

ABSTRACT

Variation in susceptibility is ubiquitous in multi-host, multi-parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti-parasite defence. This demonstrates the importance of deep phylogeny for understanding present-day ecological interactions.


Subject(s)
Haemosporida , Host-Parasite Interactions , Parasites , Plasmodium , Animals , Bayes Theorem , Birds , Phylogeny
9.
Am J Bot ; 106(2): 211-222, 2019 02.
Article in English | MEDLINE | ID: mdl-30768876

ABSTRACT

PREMISE OF THE STUDY: Plant traits are often associated with the environments in which they occur, but these associations often differ across spatial and phylogenetic scales. Here we study the relationship between microenvironment, microgeographical location, and traits within populations using co-occurring populations of two closely related evergreen shrubs in the genus Protea. METHODS: We measured a suite of functional traits on 147 plants along a single steep mountainside where both species occur, and we used data-loggers and soil analyses to characterize the environment at 10 microsites spanning the elevational gradient. We used Bayesian path analyses to detect trait-environment relationships in the field for each species. We used complementary data from greenhouse grown seedlings derived from wild collected seed to determine whether associations detected in the field are the result of genetic differentiation. KEY RESULTS: Microenvironmental variables differed substantially across our study site. We found strong evidence for six trait-environment associations, although these differed between species. We were unable to detect similar associations in greenhouse-grown seedlings. CONCLUSIONS: Several leaf traits were associated with temperature and soil variation in the field, but the inability to detect these in the greenhouse suggests that differences in the field are not the result of genetic differentiation.


Subject(s)
Microclimate , Proteaceae/physiology , Altitude , Ecosystem , Proteaceae/anatomy & histology , South Africa , Species Specificity
11.
Ecol Evol ; 8(3): 1853-1866, 2018 02.
Article in English | MEDLINE | ID: mdl-29435259

ABSTRACT

Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as "adaptive" or not. Across many groups of plants, trait-climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an "economics spectrum" along which combinations of functional traits covary along a fast-slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic-niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic-niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait-climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.

12.
Proc Natl Acad Sci U S A ; 115(10): 2401-2406, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29467285

ABSTRACT

Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.


Subject(s)
Chromatin/metabolism , Endothelial Cells , Neovascularization, Physiologic , RNA, Long Noncoding , Animals , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Hemodynamics , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, SCID , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
13.
Am J Bot ; 104(1): 102-115, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28104589

ABSTRACT

PREMISE OF THE STUDY: Estimating phylogenetic relationships in relatively recent evolutionary radiations is challenging, especially if short branches associated with recent divergence result in multiple gene tree histories. We combine anchored enrichment next-generation sequencing with species tree analyses to produce a robust estimate of phylogenetic relationships in the genus Protea (Proteaceae), an iconic radiation in South Africa. METHODS: We sampled multiple individuals within 59 out of 112 species of Protea and 6 outgroup species for a total of 163 individuals, and obtained sequences for 498 low-copy, orthologous nuclear loci using anchored phylogenomics. We compare several approaches for building species trees, and explore gene tree-species tree discrepancies to determine whether poor phylogenetic resolution reflects a lack of informative sites, incomplete lineage sorting, or hybridization. KEY RESULTS: Phylogenetic estimates from species tree approaches are similar to one another and recover previously well-supported clades within Protea, in addition to providing well-supported phylogenetic hypotheses for previously poorly resolved intrageneric relationships. Individual gene trees are markedly different from one another and from species trees. Nonetheless, analyses indicate that differences among gene trees occur primarily concerning clades supported by short branches. CONCLUSIONS: Species tree methods using hundreds of nuclear loci provided strong support for many previously unresolved relationships in the radiation of the genus Protea. In cases where support for particular relationships remains low, these appear to arise from few informative sites and lack of information rather than strongly supported disagreement among gene trees.


Subject(s)
Genetic Speciation , Genome, Plant/genetics , Genomics/methods , Proteaceae/genetics , Evolution, Molecular , Genes, Plant/genetics , Genetic Variation , Geography , High-Throughput Nucleotide Sequencing , Models, Genetic , Phylogeny , Plant Leaves/genetics , Plant Leaves/growth & development , Proteaceae/classification , Proteaceae/growth & development , South Africa , Species Specificity
14.
Am Nat ; 185(4): 525-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25811086

ABSTRACT

Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification.


Subject(s)
Biological Evolution , Pelargonium/genetics , Proteaceae/genetics , Adaptation, Physiological , Bayes Theorem , Climate , Environment , Phenotype , Phylogeny , Plant Leaves/anatomy & histology , South Africa
15.
Development ; 139(21): 3973-85, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22932696

ABSTRACT

During murine embryogenesis, the Ets factor Erg is highly expressed in endothelial cells of the developing vasculature and in articular chondrocytes of developing bone. We identified seven isoforms for the mouse Erg gene. Four share a common translational start site encoded by exon 3 (Ex3) and are enriched in chondrocytes. The other three have a separate translational start site encoded by Ex4 and are enriched in endothelial cells. Homozygous Erg(ΔEx3/ΔEx3) knockout mice are viable, fertile and do not display any overt phenotype. By contrast, homozygous Erg(ΔEx4/ΔEx4) knockout mice are embryonic lethal, which is associated with a marked reduction in endocardial-mesenchymal transformation (EnMT) during cardiac valve morphogenesis. We show that Erg is required for the maintenance of the core EnMT regulatory factors that include Snail1 and Snail2 by binding to their promoter and intronic regions.


Subject(s)
Endocardium/metabolism , Heart Valves/embryology , Heart Valves/metabolism , Mesoderm/metabolism , Oncogene Proteins/metabolism , Animals , Endocardium/embryology , Genotype , Mesoderm/embryology , Mice , Mice, Knockout , Morphogenesis , Oncogene Proteins/genetics , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Regulator ERG
16.
Eval Rev ; 34(4): 271-98, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20519692

ABSTRACT

National Heritage Areas (NHAs) are an alternative and increasingly popular form of protected area management in the United States. NHAs seek to integrate environmental objectives with community and economic objectives at regional or landscape scales. NHA designations have increased rapidly in the last 20 years, generating a substantial need for evaluative information about (a) how NHAs work; (b) outcomes associated with the NHA process; and (c) the costs and benefits of investing public moneys into the NHA approach. Qualitative evaluation studies recently conducted at three NHAs have identified the importance of understanding network structure and function in the context of evaluating NHA management effectiveness. This article extends these case studies by examining quantitative network data from each of the sites. The authors analyze these data using both a descriptive approach and a statistically more robust approach known as exponential random graph modeling. Study findings indicate the presence of transitive structures and the absence of three-cycle structures in each of these networks. This suggests that these networks are relatively ''open,'' which may be desirable, given the uncertainty of the environments in which they operate. These findings also suggest, at least at the sites reported here, that the NHA approach may be an effective way to activate and develop networks of intersectoral organizational partners. Finally, this study demonstrates the utility of using quantitative network analysis to better understand the effectiveness of protected area management models that rely on partnership networks to achieve their intended outcomes.


Subject(s)
Conservation of Natural Resources/methods , Cooperative Behavior , Social Support , Algorithms , Conservation of Natural Resources/trends , Humans , Markov Chains , Models, Organizational , Qualitative Research , Trust , United States
17.
Environ Manage ; 46(2): 195-212, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20567857

ABSTRACT

Like many governmental actors in recent decades, the U.S. National Park Service (NPS) has operated increasingly through partnerships with other state and federal agencies, non-governmental organizations (NGOs), community groups, and private sector corporations. Perhaps the most salient example of this trend toward partnerships is the rapid growth and development of national heritage areas (NHAs). Since the first NHA received congressional designation in 1984, NHAs have become an increasingly popular strategy for protecting and managing landscapes. To date, congressional designation has been granted to 49 NHAs, making them one of the fastest growing initiatives involving the NPS. Despite this growth, no prior research has examined the efficacy or effectiveness of the NHA model. This article introduces the NHA concept, while reviewing the literature on evaluation research and its application to protected area management. We then offer an NHA program theory model for evaluating NHAs. The model was developed using a theory-based, process evaluation approach, along with 90 qualitative interviews conducted at three study sites: Blackstone River Valley National Heritage Corridor, MA-RI (BLAC); Delaware and Lehigh National Heritage Corridor, PA (DELE); and Cane River National Heritage Area, LA (CANE). We conclude by discussing the key challenges and implications associated with developing a long-term research agenda for evaluating NHAs.


Subject(s)
Conservation of Natural Resources/methods , Models, Theoretical , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...