Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
J Immunol ; 210(10): 1607-1619, 2023 05 15.
Article En | MEDLINE | ID: mdl-37027017

Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.


Complementarity Determining Regions , Humans , Complementarity Determining Regions/genetics , Base Sequence
2.
G3 (Bethesda) ; 12(11)2022 11 04.
Article En | MEDLINE | ID: mdl-36161486

Long-read sequencing technologies such as isoform sequencing can generate highly accurate sequences of full-length mRNA transcript isoforms. Such long-read transcriptomics may be especially useful in investigations of lymphocyte functional plasticity as it relates to human health and disease. However, no long-read isoform-aware reference transcriptomes of human circulating lymphocytes are readily available despite being valuable as benchmarks in a variety of transcriptomic studies. To begin to fill this gap, we purified 4 lymphocyte populations (CD4+ T, CD8+ T, NK, and Pan B cells) from the peripheral blood of a healthy male donor and obtained high-quality RNA (RIN > 8) for isoform sequencing and parallel RNA-Seq analyses. Many novel polyadenylated transcript isoforms, supported by both isoform sequencing and RNA-Seq data, were identified within each sample. The datasets met several metrics of high quality and have been deposited to the Gene Expression Omnibus database (GSE202327, GSE202328, GSE202329) as both raw and processed files to serve as long-read reference transcriptomes for future studies of human circulating lymphocytes.


Gene Expression Profiling , Transcriptome , Humans , Male , High-Throughput Nucleotide Sequencing , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Analysis, RNA , Lymphocyte Subsets/metabolism
3.
Immunohorizons ; 6(1): 47-63, 2022 01 18.
Article En | MEDLINE | ID: mdl-35042773

The Fc receptor for IgM, FcMR, is unusual in that it is preferentially expressed by cells of the adaptive immune system. It is, moreover, the only constitutively expressed Fc receptor on human T cells. Efforts to decipher the normal functions of FcMR have been complicated by species-specific expression patterns in lymphocytes from mice (B cells) versus humans (B, NK, and T cells). In human cells, FcMR cell-surface expression has been reported to be low at baseline ex vivo, with one suggested contribution being ligand-induced internalization by serum IgM. Indeed, preincubation overnight in IgM-free culture medium is recommended for studies of FcMR because surface display is increased under these conditions. We investigated FcMR display on human lymphocytes in PBMCs and found that, surprisingly, cell-surface FcMR was unaffected by IgM abundance and was instead downregulated in high-cell density cultures by a yet undefined mechanism. We further found that ex vivo processing of whole blood decreased surface FcMR, supporting the idea that FcMR expression is likely to be greater on circulating lymphocytes than previously appreciated. Collectively, these findings prompt new predictions of where and when FcMR might be available for functional interactions in vivo.


B-Lymphocytes/cytology , Immunoglobulin M/immunology , Receptors, Fc/immunology , T-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Count , Humans , Leukocytes, Mononuclear/metabolism , Lymphopoiesis/immunology , Membrane Proteins/immunology , Receptors, Fc/biosynthesis , T-Lymphocytes/immunology
4.
Viruses ; 13(3)2021 02 27.
Article En | MEDLINE | ID: mdl-33673546

Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein-protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein-protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host-pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid-IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid-IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein-protein interactions, establish the capsid-IRAK1 interaction as a common alphavirus host-pathogen interface, and delineate the molecular consequences of the capsid-IRAK1 interaction on IRAK1-dependent signaling.


Alphavirus/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Signal Transduction/genetics , Toll-Like Receptors/genetics , Animals , Capsid , Capsid Proteins/genetics , Cell Line , Chikungunya virus/genetics , Encephalitis Virus, Eastern Equine/genetics , Encephalitis Virus, Venezuelan Equine/genetics , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Protein Interaction Maps/genetics , RNA, Viral/genetics , Sindbis Virus/genetics , Virus Replication/genetics
5.
J Biol Methods ; 8: e164, 2021.
Article En | MEDLINE | ID: mdl-36438426

Surface modified microspheres have been leveraged as a useful way to immobilize antigen for serological studies. The use of carboxyl modified microspheres for this purpose is well-established, but commonly associated with technical challenges. Streptavidin modified microspheres require little technical expertise and thus address some of the shortcomings of carboxyl microspheres. An additional feature of streptavidin microspheres is the use of mono-biotinylated proteins, which contain a single biotinylation motif at the C-terminus. However, the relative performance of streptavidin and carboxyl microspheres is unknown. Here, we performed a head-to-head comparison of streptavidin and carboxyl microspheres. We compared antigen binding, orientation, and staining quality and found that both microspheres perform similarly based on these defined parameters. We also evaluated the utility of streptavidin microspheres bound to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD), to reliably detect RBD-specific IgG1, IgG3, and IgA1 produced in individuals recently immunized with Pfizer/BioNTech mRNA coronavirus disease (COVID) vaccine as 'proof-of-concept'. We provide evidence that each of the antibody targets are detectable in serum using RBD-coated microspheres, Ig-specific 'detector' monoclonal antibodies (mAbs), and flow cytometry. We found that cross-reactivity of the detector mAbs can be minimized by antibody titration to improve differentiation between IgG1 and IgG3. We also coated streptavidin microspheres with SARS-CoV-2 delta variant RBD to determine if the streptavidin microsphere approach revealed any differences in binding of immune serum antibodies to wild-type (Wuhan) versus variant RBD (Delta). Overall, our results show that streptavidin microspheres loaded with mono-biotinylated antigen is a robust alternative to chemically cross-linking antigen to carboxyl microspheres for use in serological assays.

6.
Front Immunol ; 11: 577823, 2020.
Article En | MEDLINE | ID: mdl-33178204

Monophosphoryl lipid A (MPL®) is the first non-alum vaccine adjuvant to achieve widespread clinical and market acceptance, a remarkable achievement given that it is manufactured from a Salmonella enterica endotoxin. To understand how MPL® successfully balanced the dual mandate of vaccine design-low reactogenicity with high efficacy-clinical- and research-grade MPL was evaluated in human and mouse cell systems. Stimulatory dose response curves revealed that most preparations of MPL are much more active in mouse than in human cell systems, and that the limited efficacy observed in human cells correlated with TLR4 inhibitory activity that resulted in a partial agonist profile. Further analysis of the major components of MPL® adjuvant prepared synthetically identified two structural variants that functioned as competitive antagonists of human TLR4. A partial agonist profile could be recapitulated and manipulated by spiking synthetic agonists with synthetic antagonists to achieve a broad dose range over which TLR4 stimulation could be constrained below a desired threshold. This report thus identifies mixed agonist-antagonist activity as an additional mechanism by which MPL® adjuvant is detoxified, relative to its parental LPS, to render it safe for use in prophylactic vaccines.


Adjuvants, Immunologic/pharmacology , Lipid A/analogs & derivatives , Macrophages/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Drug Partial Agonism , Humans , Lipid A/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Species Specificity , THP-1 Cells , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
7.
Sci Rep ; 10(1): 488, 2020 01 16.
Article En | MEDLINE | ID: mdl-31949198

Phylogenomic studies have so far mostly relied on genome skimming or target sequence capture, which suffer from representation bias and can fail to resolve relationships even with hundreds of loci. Here, we explored the potential of phylogenetic informativeness and tree confidence analyses to interpret phylogenomic datasets. We studied Cucurbitaceae because their small genome size allows cost-efficient genome skimming, and many relationships in the family remain controversial, preventing inferences on the evolution of characters such as sexual system or floral morphology. Genome skimming and PCR allowed us to retrieve the plastome, 57 single copy nuclear genes, and the nuclear ribosomal ITS from 29 species representing all but one tribe of Cucurbitaceae. Node support analyses revealed few inter-locus conflicts but a pervasive lack of phylogenetic signal among plastid loci, suggesting a fast divergence of Cucurbitaceae tribes. Data filtering based on phylogenetic informativeness and risk of homoplasy clarified tribe-level relationships, which support two independent evolutions of fringed petals in the family. Our study illustrates how formal analysis of phylogenomic data can increase our understanding of past diversification processes. Our data and results will facilitate the design of well-sampled phylogenomic studies in Cucurbitaceae and related families.


Cell Nucleus/genetics , Cucurbitaceae/classification , Cucurbitaceae/genetics , Evolution, Molecular , Genome, Plastid , Phylogeny , Plastids/genetics , Internal Ribosome Entry Sites
10.
Cancer Immunol Res ; 6(3): 332-347, 2018 03.
Article En | MEDLINE | ID: mdl-29382671

The presence of mast cells in some human colorectal cancers is a positive prognostic factor, but the basis for this association is incompletely understood. Here, we found that mice with a heterozygous mutation in the adenomatous polyposis coli gene (ApcMin/+) displayed reduced intestinal tumor burdens and increased survival in a chemokine decoy receptor, ACKR2-null background, which led to discovery of a critical role for mast cells in tumor defense. ACKR2-/-ApcMin/+ tumors showed increased infiltration of mast cells, their survival advantage was lost in mast cell-deficient ACKR2-/-SA-/-ApcMin/+ mice as the tumors grew rapidly, and adoptive transfer of mast cells restored control of tumor growth. Mast cells from ACKR2-/- mice showed elevated CCR2 and CCR5 expression and were also efficient in antigen presentation and activation of CD8+ T cells. Mast cell-derived leukotriene B4 (LTB4) was found to be required for CD8+ T lymphocyte recruitment, as mice lacking the LTB4 receptor (ACKR2-/-BLT1-/-ApcMin/+) were highly susceptible to intestinal tumor-induced mortality. Taken together, these data demonstrate that chemokine-mediated recruitment of mast cells is essential for initiating LTB4/BLT1-regulated CD8+ T-cell homing and generation of effective antitumor immunity against intestinal tumors. We speculate that the pathway reported here underlies the positive prognostic significance of mast cells in selected human tumors. Cancer Immunol Res; 6(3); 332-47. ©2018 AACR.


CD8-Positive T-Lymphocytes/immunology , Intestinal Neoplasms/immunology , Mast Cells/immunology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/immunology , Animals , Female , Immunologic Surveillance , Leukotriene B4/immunology , Male , Mice, Transgenic , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Receptors, Leukotriene B4/genetics , Receptors, Leukotriene B4/immunology
11.
Curr Opin Immunol ; 47: 17-25, 2017 Aug.
Article En | MEDLINE | ID: mdl-28728074

Development of non-infectious subunit vaccines is hampered by a slow pipeline of new adjuvants to replace or enhance alum in part because expectations of safety are high. Transient vaccine side effects are not clinical priorities because they cause no lasting harm and vaccine development has appropriately been focused on avoidance of serious adverse events. As a result, surprisingly little is known about the extent to which side effects caused by a vaccine's reactogencicity are predictive of successful immunization outcomes. Recent clinical studies of pertussis and human papillomavirus vaccines adjuvanted with alum or the TLR4 agonist monophosphoryl lipid A can be used to advance understanding of the relationship between vaccine side effects and immunization outcomes.


Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Antibodies, Viral/metabolism , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Lipid A/analogs & derivatives , Pain/prevention & control , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Whooping Cough/immunology , Adjuvants, Immunologic/adverse effects , Alum Compounds/adverse effects , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Humans , Lipid A/administration & dosage , Lipid A/pharmacology , Pain/etiology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/adverse effects , Toll-Like Receptor 4/agonists , Treatment Outcome , Vaccination , Whooping Cough/prevention & control
12.
J Leukoc Biol ; 100(5): 1047-1059, 2016 11.
Article En | MEDLINE | ID: mdl-27538572

Pseudomonas aeruginosa (PA) infection in cystic fibrosis (CF) lung disease causes airway neutrophilia and hyperinflammation without effective bacterial clearance. We evaluated the immunostimulatory activities of lipid A, the membrane anchor of LPS, isolated from mutants of PA that synthesize structural variants, present in the airways of patients with CF, to determine if they correlate with disease severity and progression. In a subset of patients with a severe late stage of CF disease, a unique hepta-acylated lipid A, hepta-1855, is synthesized. In primary human cell cultures, we found that hepta-1855 functioned as a potent TLR4 agonist by priming neutrophil respiratory burst and stimulating strong IL-8 from monocytes and neutrophils. hepta-1855 also had a potent survival effect on neutrophils. However, it was less efficient in stimulating neutrophil granule exocytosis and also less potent in triggering proinflammatory TNF-α response from monocytes. In PA isolates that do not synthesize hepta-1855, a distinct CF-specific adaptation favors synthesis of a penta-1447 and hexa-1685 LPS mixture. We found that penta-1447 lacked immunostimulatory activity but interfered with inflammatory IL-8 synthesis in response to hexa-1685. Together, these observations suggest a potential contribution of hepta-1855 to maintenance of the inflammatory burden in late-stage CF by recruiting neutrophils via IL-8 and promoting their survival, an effect presumably amplified by the absence of penta-1447. Moreover, the relative inefficiency of hepta-1855 in triggering neutrophil degranulation may partly explain the persistence of PA in CF disease, despite extensive airway neutrophilia.


Cystic Fibrosis/immunology , Lipid A/analogs & derivatives , Neutrophil Activation/drug effects , Opportunistic Infections/immunology , Pneumonia, Bacterial/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Toll-Like Receptor 4/agonists , Acylation , Cells, Cultured , Chronic Disease , Cystic Fibrosis/microbiology , Disease Progression , Exocytosis/drug effects , HEK293 Cells , Humans , Lipid A/biosynthesis , Lipid A/pharmacology , Lipid A/physiology , Lipopolysaccharides/pharmacology , Opportunistic Infections/etiology , Opportunistic Infections/metabolism , Opportunistic Infections/microbiology , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/metabolism , Pneumonia, Bacterial/microbiology , Pseudomonas Infections/etiology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/isolation & purification , Respiratory Burst/drug effects , Structure-Activity Relationship
13.
BMC Evol Biol ; 16: 16, 2016 Jan 19.
Article En | MEDLINE | ID: mdl-26787507

BACKGROUND: At a global scale, the temperate zone is highly fragmented both between and within hemispheres. This paper aims to investigate how the world's disjunct temperate zones have been colonised by the pan-temperate plant group Convolvuleae, sampling 148 of the c. 225 known species. We specifically determine the number and timing of amphitropical and transoceanic disjunctions, investigate the extent to which disjunctions in Convolvuleae are spatio-temporally congruent with those in other temperate plant groups and determine the impact of long-distance dispersal events on diversification rates. RESULTS: Eight major disjunctions are observed in Convolvuleae: two Northern Hemisphere, two Southern Hemisphere and four amphitropical. Diversity in the Southern Hemisphere is largely the result of a single colonisation of Africa 3.1-6.4 Ma, and subsequent dispersals from Africa to both Australasia and South America. Speciation rates within this monophyletic, largely Southern Hemisphere group (1.38 species Myr(-1)) are found to be over twice those of the tribe as a whole (0.64 species Myr(-1)). Increased speciation rates are also observed in Calystegia (1.65 species Myr(-1)). CONCLUSIONS: The Convolvuleae has colonised every continent of the world with a temperate biome in c. 18 Myr and eight major range disjunctions underlie this broad distribution. In keeping with other temperate lineages exhibiting disjunct distributions, long-distance dispersal is inferred as the main process explaining the patterns observed although for one American-Eurasian disjunction we cannot exclude vicariance. The colonisation of the temperate zones of the three southern continents within the last c. 4 Myr is likely to have stimulated high rates of diversification recovered in this group, with lineage accumulation rates comparable to those reported for adaptive radiations.


Convolvulaceae/physiology , Africa , Introduced Species , Phylogeny , Phylogeography , South America
14.
PhytoKeys ; (51): 1-282, 2015.
Article En | MEDLINE | ID: mdl-26140023

A global revision of Convolvulus L. is presented, Calystegia R.Br. being excluded on pragmatic grounds. One hundred and ninety species are recognised with the greatest diversity in the Irano-Turanian region. All recognised species are described and the majority are illustrated. Distribution details, keys to species identification and taxonomic notes are provided. Four new species, Convolvulusaustroafricanus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulusiranicus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvuluspeninsularis J.R.I.Wood & R.W.Scotland, sp. nov. and Convolvulusxanthopotamicus J.R.I.Wood & R.W.Scotland, sp. nov., one new subspecies Convolvuluschinensissubsp.triangularis J.R.I.Wood & R.W.Scotland, subsp. nov., and two new varieties Convolvulusequitansvar.lindheimeri J.R.I.Wood & R.W.Scotland, var. nov., Convolvulusglomeratusvar.sachalitarum J.R.I.Wood & R.W.Scotland, var. nov. are described. Convolvulusincisodentatus J.R.I.Wood & R.W.Scotland, nom. nov., is provided as a replacement name for the illegitimate Convolvulusincisus Choisy. Several species treated as synonyms of other species in recent publications are reinstated including Convolvuluschinensis Ker-Gawl., Convolvulusspinifer M.Popov., Convolvulusrandii Rendle and Convolvulusaschersonii Engl. Ten taxa are given new status and recognised at new ranks: Convolvulusnamaquensis (Schltr. ex. A.Meeuse) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulushermanniaesubsp.erosus (Desr.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvuluscrenatifoliussubsp.montevidensis (Spreng.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulusfruticulosussubsp.glandulosus (Webb) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvuluscapituliferussubsp.foliaceus (Verdc.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulushystrixsubsp.ruspolii (Dammer ex Hallier f.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulushystrixsubsp.inermis (Chiov.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulusrottlerianussubsp.stocksii (Boiss.) J.R.I.Wood & R.W.Scotland, comb. et stat. nov., Convolvuluscalvertiisubsp.ruprechtii (Boiss.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvuluscephalopodussubsp.bushiricus (Bornm.) J.R.I.Wood & R.W.Scotland, stat. nov. The status of various infraspecific taxa is clarified and numerous taxa are lectotypified. This account represents a new initiative in terms of taxonomic monography, being an attempt to bring together the global approach of the traditional monograph with the more pragmatic and identification-focussed approach of most current floras while at the same time being informed by insights from molecular systematics.

15.
Sci Signal ; 7(351): ra108, 2014 Nov 11.
Article En | MEDLINE | ID: mdl-25389373

Signaling by Toll-like receptor 4 (TLR4) is mediated by either of two adaptor proteins: myeloid differentiation marker 88 (MyD88) or Toll-interleukin-1 (IL-1) receptor (TIR) domain-containing adaptor inducing interferon-ß (TRIF). Whereas MyD88-mediated signaling leads to proinflammatory responses, TRIF-mediated signaling leads to less toxic immunostimulatory responses that are beneficial in boosting vaccine responses. The hypothesis that monophosphorylated lipid A structures act as TRIF-biased agonists of TLR4 offered a potential mechanism to explain their clinical value as vaccine adjuvants, but studies of TRIF-biased agonists have been contradictory. In experiments with mouse dendritic cells, we found that irrespective of the agonist used, TLR4 functioned as a TRIF-biased signaling system through a mechanism that depended on the autocrine and paracrine effects of type I interferons. The TLR4 agonist synthetic lipid A induced expression of TRIF-dependent genes at lower concentrations than were necessary to induce the expression of genes that depend on MyD88-mediated signaling. Blockade of type I interferon signaling selectively decreased the potency of lipid A (increased the concentration required) in inducing the expression of TRIF-dependent genes, thereby eliminating adaptor bias. These data may explain how high-potency TLR4 agonists can act as clinically useful vaccine adjuvants by selectively activating TRIF-dependent signaling events required for immunostimulation, without or only weakly activating potentially harmful MyD88-dependent inflammatory responses.


Adaptor Proteins, Vesicular Transport/metabolism , Gene Expression Regulation , Interferon Type I/metabolism , Lipid A/chemistry , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Animals , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Cytokines/metabolism , Dendritic Cells/cytology , Inflammation , Interferon-beta/metabolism , MAP Kinase Kinase 4/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction
16.
Infect Immun ; 81(9): 3317-25, 2013 Sep.
Article En | MEDLINE | ID: mdl-23798540

Natural heterogeneity in the structure of the lipid A portion of lipopolysaccharide (LPS) produces differential effects on the innate immune response. Gram-negative bacterial species produce LPS structures that differ from the classic endotoxic LPS structures. These differences include hypoacylation and hypophosphorylation of the diglucosamine backbone, both differences known to decrease LPS toxicity. The effect of decreased toxicity on the adjuvant properties of many of these LPS structures has not been fully explored. Here we demonstrate that two naturally produced forms of monophosphorylated LPS, from the mucosa-associated bacteria Bacteroides thetaiotaomicron and Prevotella intermedia, function as immunological adjuvants for antigen-specific immune responses. Each form of mucosal LPS increased vaccination-initiated antigen-specific antibody titers in both quantity and quality when given simultaneously with vaccine antigen preparations. Interestingly, adjuvant effects on initial T cell clonal expansion were selective for CD4 T cells. No significant increase in CD8 T cell expansion was detected. MyD88/Toll-like receptor 4 (TLR4) and TRIF/TLR4 signaling pathways showed equally decreased signaling with the LPS forms studied here as with endotoxic LPS or detoxified monophosphorylated lipid A (MPLA). Natural monophosphorylated LPS from mucosa-associated bacteria functions as a weak but effective adjuvant for specific immune responses, with preferential effects on antibody and CD4 T cell responses over CD8 T cell responses.


Adjuvants, Immunologic/pharmacology , Bacteria/immunology , Lipid A/immunology , Lipopolysaccharides/immunology , Mucous Membrane/immunology , Adaptor Proteins, Vesicular Transport/immunology , Adaptor Proteins, Vesicular Transport/metabolism , Adjuvants, Immunologic/metabolism , Animals , Bacteria/metabolism , Bacteroides/immunology , Bacteroides/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Humans , Lipid A/metabolism , Lipopolysaccharides/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , Mucous Membrane/metabolism , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Prevotella intermedia/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Vaccination/methods
17.
PLoS One ; 8(4): e62622, 2013.
Article En | MEDLINE | ID: mdl-23638128

Synthetic forms of E. coli monophosphoryl lipid A (sMLA) weakly activate the MyD88 (myeloid differentiation primary response protein) branch of the bifurcated TLR4 (Toll-like receptor 4) signaling pathway, in contrast to diphosphoryl lipid A (sDLA), which is a strong activator of both branches of TLR4. sMLA's weak MyD88 signaling activity is apparent downstream of TLR4/MyD88 signaling as we show that sMLA, unlike sDLA, is unable to efficiently recruit the TNF receptor-associated factor 6 (TRAF6) to the Interleukin-1 receptor-associated kinase 1 (IRAK1). This reduced recruitment of TRAF6 explains MLA's lower MAPK (Mitogen Activated Protein Kinase) and NF-κB activity. As further tests of sMLA's ability to activate TLR4/Myeloid differentiation factor 2 (MD-2), we used the antibody MTS510 as an indicator for TLR4/MD-2 heterotetramer formation. Staining patterns with this antibody indicated that sMLA does not effectively drive heterotetramerization of TLR4/MD-2 when compared to sDLA. However, a F126A mutant of MD-2, which allows lipid A binding but interferes with TLR4/MD-2 heterotetramerization, revealed that while sMLA is unable to efficiently form TLR4/MD-2 heterotetramers, it still needs heterotetramer formation for the full extent of signaling it is able to achieve. Monophosphoryl lipid A's weak ability to form TLR4/MD-2 heterotetramers was not restricted to synthetic E. coli type because cells exposed to a biological preparation of S. minnesota monophosphoryl lipid A (MPLA) also showed reduced TLR4/MD-2 heterotetramer formation. The low potency with which sMLA and MPLA drive heterotetramerization of TLR4/MD-2 contributes to their weak MyD88 signaling activities.


Lipid A/analogs & derivatives , Lymphocyte Antigen 96/metabolism , Protein Multimerization/drug effects , Toll-Like Receptor 4/metabolism , Animals , HEK293 Cells , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipid A/pharmacology , Mice , Mice, Inbred C57BL , Mutant Proteins/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Phosphates/metabolism , Protein Transport/drug effects , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/metabolism
18.
PLoS One ; 8(2): e56855, 2013.
Article En | MEDLINE | ID: mdl-23457630

Toll like receptor 4 (TLR4) is an important pattern recognition receptor with the ability to drive potent innate immune responses and also to modulate adaptive immune responses needed for long term protection. Activation of TLR4 by its ligands is mediated by engagement of the adapter proteins MyD88 (myeloid differentiation factor 88) and TRIF (Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta). Previously, we showed that TRIF, but not MyD88, plays an important role in allowing TLR4 agonists to adjuvant early T cell responses. In this study, we investigated the T cell priming events that are regulated specifically by the TRIF signaling branch of TLR4. We found that TRIF deficiency prevented the TLR4 agonist lipid A from enhancing T cell proliferation and survival in an adoptive transfer model of T cell priming. TRIF deficient DC showed defective maturation as evidenced by their failure to upregulate co-stimulatory molecules in response to lipid A stimulation. Importantly, TRIF alone caused CD86 and CD40 upregulation on splenic DC, but both TRIF and MyD88 were required for CD80 upregulation. The impairment of T cell adjuvant effects and defective DC maturation in TRIF (lps/lps) mice after TLR4 stimulation was mainly due to loss of type I IFN production, indicating that type I interferons are central to TLR4's adjuvant effects. These results are useful for the continued development of TLR4 based vaccine adjuvants that avoid inflammatory risks while retaining beneficial immune response.


Adaptor Proteins, Vesicular Transport/metabolism , Adjuvants, Immunologic/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/deficiency , Animals , Cell Division/drug effects , Cell Division/immunology , Cell Proliferation/drug effects , Chemokines/metabolism , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/immunology , Clone Cells/metabolism , Interferon Type I/metabolism , Lipid A/pharmacology , Mice , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Toll-Like Receptor 4/agonists
19.
Adv Pharmacol ; 66: 81-128, 2013.
Article En | MEDLINE | ID: mdl-23433456

The structural core of bacterial lipopolysaccharide, lipid A, has played a role in medicine since the 1890s when William Coley sought to harness its immunostimulatory properties in the form of a crude bacterial extract. Recent decades have brought remarkable clarity to the structure of lipid A and the multicomponent endotoxin receptor system that evolved to detect it. A range of therapeutically useful versions of lipid A now exists, including preparations of detoxified lipid A, synthetic copies of naturally occurring biological intermediates such as lipid IVa, and synthetic mimetics. These agents are finding use as vaccine adjuvants, antagonists and immunostimulants whose structural features have been refined to potentiate efficacy while decreasing the risk of inflammatory side effects.


Immune System/drug effects , Immunologic Factors/pharmacology , Lipid A/analogs & derivatives , Lipopolysaccharide Receptors/metabolism , Signal Transduction/drug effects , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Humans , Immune System/immunology , Immune System/metabolism , Immunologic Factors/adverse effects , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Lipid A/adverse effects , Lipid A/chemistry , Lipid A/pharmacology , Lipopolysaccharide Receptors/chemistry , Receptors, Immunologic/agonists , Receptors, Immunologic/chemistry , Receptors, Immunologic/metabolism , Receptors, Interleukin-1/agonists , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism
20.
Front Immunol ; 3: 154, 2012.
Article En | MEDLINE | ID: mdl-22707952

The vertebrate immune system exists in equilibrium with the microbial world. The innate immune system recognizes pathogen-associated molecular patterns via a family of Toll-like receptors (TLR) that activate cells upon detection of potential pathogens. Because some microbes benefit their hosts, mobilizing the appropriate response, and then controlling that response is critical in the maintenance of health. TLR4 recognizes the various forms of lipid A produced by Gram-negative bacteria. Depending on the structural form of the eliciting lipid A molecule, TLR4 responses range from a highly inflammatory endotoxic response involving inflammasome and other pro-inflammatory mediators, to an inhibitory, protective response. Mounting the correct response against an offending microbe is key to maintaining health when exposed to various bacterial species. Further study of lipid A variants may pave the way to understanding how TLR4 responses are generally able to avoid chronic inflammatory damage.

...