Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Nanoscale ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39310954

ABSTRACT

Extracellular vesicles (EVs) are cell-secreted nanoscale vesicles with important roles in cell-cell communication and drug delivery. Although EVs pose a promising alternative to cell-based therapy, targeted delivery in vivo is lacking. Their surface is often modified to endow them with active targeting molecules to enable specific cell uptake and tailor EV biodistribution. A dominant paradigm has been to evaluate the EV surface functionalization using bulk analysis assays, such as western blotting and bead-based flow cytometry. Yet, the heterogeneity of EVs is now recognized as a major bottleneck for their clinical translation. Here, we engineer the EV surface at the single-vesicle level. We applied orthogonal platforms with single vesicle resolution to determine and optimize the efficiency of conjugating the myelin-targeting aptamer LJM-3064 to single EVs (Apt-EVs). The aptamers were conjugated using either lipid insertion or covalent protein modification, followed by an assessment of single-EV integrity and stability. We observed unique aptamer conjugation to single EVs that depends on EV size. Our study underscores the importance of single vesicle analysis for engineering EVs and provides a novel single-EV-based framework for modifying EV surfaces.

2.
J Extracell Vesicles ; 13(10): e12510, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39330928

ABSTRACT

This systematic review examines the landscape of extracellular vesicle (EV)-related clinical trials to elucidate the field's trends in clinical applications and EV-related methodologies, with an additional focus on the acknowledgement of EV subpopulations. By analysing data from public reporting repositories, we catalogued 471 EV-related clinical trials to date, with indications for over 200 diseases. Diagnostics and companion diagnostics represented the bulk of EV-related clinical trials with cancer being the most frequent application. EV-related therapeutics trials mainly utilized mesenchymal stromal cell (MSC) EVs and were most frequently used for treatment of respiratory illnesses. Ultracentrifugation and RNA-sequencing were the most common isolation and characterization techniques; however, methodology for each was not frequently reported in study records. Most of the reported characterization relied on bulk characterization of EV isolates, with only 11% utilizing EV subpopulations in their experimental design. While this may be connected to a lack of available techniques suitable for clinical implementation, it also highlights the opportunity for use of EV subpopulations to improve translational efforts. As academic research identifies more chemically distinct subpopulations and technologies for their enrichment, we forecast to more refined EV trials in the near future. This review emphasizes the need for meticulous methodological reporting and consideration of EV subpopulations to enhance the translational success of EV-based interventions, pointing towards a paradigm shift in personalized medicine.


Subject(s)
Clinical Trials as Topic , Extracellular Vesicles , Humans , Extracellular Vesicles/metabolism , Neoplasms/therapy , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology
3.
J Extracell Biol ; 3(8): e70003, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39185333

ABSTRACT

Since extracellular vesicles (EVs) have emerged as a promising drug delivery system, diverse methods have been used to load them with active pharmaceutical ingredients (API) in preclinical and clinical studies. However, there is yet to be an engineered EV formulation approved for human use, a barrier driven in part by the intrinsic heterogeneity of EVs. API loading is rarely assessed in the context of single vesicle measurements of physicochemical properties but is likely administered in a heterogeneous fashion to the detriment of a consistent product. Here, we applied a suite of single-particle resolution methods to determine the loading of rhodamine 6G (R6G) surrogate cargo mimicking hydrophilic small molecule drugs across four common API loading methods: sonication, electroporation, freeze-thaw cycling and passive incubation. Loading efficiencies and alterations in the physical properties of EVs were assessed, as well as co-localization with common EV-associated tetraspanins (i.e., CD63, CD81 and CD9) for insight into EV subpopulations. Sonication had the highest loading efficiency, yet significantly decreased particle yield, while electroporation led to the greatest number of loaded API particles, albeit at a lower efficiency. Moreover, results were often inconsistent between repeated runs within a given method, demonstrating the difficulty in developing a rigorous loading method that consistently loaded EVs across their heterogeneous subpopulations. This work highlights the significance of how chosen quantification metrics can impact apparent conclusions and the importance of single-particle characterization of EV loading.

4.
Adv Biol (Weinh) ; 8(6): e2300577, 2024 06.
Article in English | MEDLINE | ID: mdl-38596830

ABSTRACT

Metastasis is the principal factor in poor prognosis for individuals with osteosarcoma (OS). Understanding the events that lead to metastasis is critical to develop better interventions for this disease. Alveolar macrophages are potentially involved in priming the lung microenvironment for OS metastasis, yet the mechanisms involved in this process remain unclear. Since extracellular vesicles (EVs) are a known actor in primary tumor development, their potential role in OS metastagenesis through macrophage modulation is explored here. The interaction of EVs isolated from highly metastatic (K7M2) and less metastatic (K12) osteosarcoma cell lines is compared with a peritoneal macrophage cell line. An EV concentration that reproducibly induced macrophage migration is identified first, then used for later experiments. By confocal microscopy, both EV types associated with M0 or M1 macrophages; however, only K7M2-EVs are associated with M2 macrophages, an interaction that is abrogated by EV pre-treatment with anti-CD47 antibody. Interestingly, all interactions appeared to be surface binding, not internalized. In functional studies, K7M2-EVs polarized fewer macrophages to M1. Together, these data suggest that K7M2-EVs have unique interactions with macrophages that can contribute to the production of a higher proportion of pro-tumor type macrophages, thereby accelerating metastasis.


Subject(s)
Bone Neoplasms , Extracellular Vesicles , Macrophages , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/secondary , Extracellular Vesicles/metabolism , Humans , Cell Line, Tumor , Macrophages/immunology , Macrophages/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Phenotype , Animals , Tumor Microenvironment , Neoplasm Metastasis , Mice , Cell Movement
5.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326288

ABSTRACT

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Exosomes/metabolism , Biological Transport , Biomarkers/metabolism , Phenotype
6.
J Extracell Vesicles ; 12(4): e12323, 2023 04.
Article in English | MEDLINE | ID: mdl-37073802

ABSTRACT

Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3ß1 and α6ß1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 µm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3ß1 and α6ß1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.


Subject(s)
Extracellular Vesicles , Laminin , Humans , Laminin/metabolism , Convection , Integrin alpha6beta1/metabolism , Extracellular Vesicles/metabolism , Integrin alpha3beta1/metabolism , Extracellular Matrix/metabolism
7.
Microbiol Spectr ; 10(4): e0121122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35876590

ABSTRACT

Feline calicivirus (FCV) is a major cause of upper respiratory disease in cats and is often used as a model for human norovirus, making it of great veterinary and human medical importance. However, questions remain regarding the route of entry of FCV in vivo. Increasing work has shown that extracellular vesicles (EVs) can be active in viral infectivity, yet there is no work examining the role of EVs in FCV infection. Here, we begin to address this knowledge gap by characterizing EVs produced by a feline mammary epithelial cell line (FMEC). We have confirmed that EVs are produced by infected and mock-infected FMECs and that both virions and EVs are coisolated with standard methods of virus purification. We also show that they can be enriched differentially by continuous iodixanol density gradient. EVs were enriched at a density of 1.10 g/mL confirmed by tetraspanin expression, size profile, and transmission electron microscopy (TEM). Maximum enrichment of FCV at a density of 1.18 g/mL was confirmed by titration, quantitative reverse transcriptase PCR (q-RT PCR), and TEM. However, infectious virus was recovered from nearly all samples. When used to infect in vitro epithelium, both EV-rich and virus-rich fractions had the same levels of infectiousness as determined by percentage of wells infected or titer achieved postinfection. These findings highlight the importance of coisolates during viral purification, showing that EVs may represent a parallel route of entry that has previously been overlooked. Additional experiments are necessary to explore the role of EVs in FCV infection. IMPORTANCE Feline calicivirus (FCV) is a common cause of upper respiratory infection in cats. Both healthy and infected cells produce small particles called extracellular vesicles (EVs), which are nanoparticles that act as messengers between cells and can be hijacked during viral infection. Historically, the role of EVs in viral infection has been overlooked, and subsequently no group has studied the role of EVs in FCV infection. We hypothesized that EVs may play a role in FCV infection. Here, we show that EVs are copurified with FCV when collecting virus. To study their individual effects, we successfully enrich for viral particles and EVs separately by taking advantage of their different densities. Our initial studies show that EV-enriched versus virus-enriched fractions are equally able to infect cells in culture. These findings highlight the need to both consider the purity of virus after purification and to further study EVs' role in natural FCV infection.


Subject(s)
Caliciviridae Infections , Calicivirus, Feline , Cat Diseases , Communicable Diseases , Extracellular Vesicles , Respiratory Tract Infections , Animals , Caliciviridae Infections/veterinary , Calicivirus, Feline/metabolism , Cats , Humans
8.
J Extracell Biol ; 1(10): e63, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38939213

ABSTRACT

Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, "The Extracellular Vesicle Foundry" (evFOUNDRY) and "Extracellular vesicles from a natural source for tailor-made nanomaterials" (VES4US), organized a workshop entitled "massivEVs" to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during "massivEVs", the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.

9.
Nanoscale ; 13(35): 14760-14776, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34473170

ABSTRACT

Given the emerging diagnostic utility of extracellular vesicles (EVs), it is important to account for non-EV contaminants. Lipoprotein present in EV-enriched isolates may inflate particle counts and decrease sensitivity to biomarkers of interest, skewing chemical analyses and perpetuating downstream issues in labeling or functional analysis. Using label free surface enhanced Raman scattering (SERS), we confirm that three common EV isolation methods (differential ultracentrifugation, density gradient ultracentrifugation, and size exclusion chromatography) yield variable lipoprotein content. We demonstrate that a dual-isolation method is necessary to isolate EVs from the major classes of lipoprotein. However, combining SERS analysis with machine learning assisted classification, we show that the disease state is the main driver of distinction between EV samples, and largely unaffected by choice of isolation. Ultimately, this study describes a convenient SERS assay to retain accurate diagnostic information from clinical samples by overcoming differences in lipoprotein contamination according to isolation method.


Subject(s)
Extracellular Vesicles , Neoplasms , Chromatography, Gel , Humans , Lipoproteins , Neoplasms/diagnosis , Spectrum Analysis, Raman , Ultracentrifugation
10.
J Nanobiotechnology ; 19(1): 250, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34419056

ABSTRACT

BACKGROUND: Tetraspanin expression of extracellular vesicles (EVs) is often used as a surrogate for their detection and classification, a practice that typically assumes their consistent expression across EV sources. RESULTS: Here we demonstrate that there are distinct patterns in colocalization of tetraspanin expression of EVs enriched from a variety of in vitro and in vivo sources. We report an optimized method for the use of single particle antibody-capture and fluorescence detection to identify subpopulations according to tetraspanin expression and compare our findings with nanoscale flow cytometry. We found that tetraspanin profile is consistent from a given EV source regardless of isolation method, but that tetraspanin profiles are distinct across various sources. Tetraspanin profiles measured by flow cytometry do not totally agree, suggesting that limitations in subpopulation detection significantly impact apparent protein expression. We further analyzed tetraspanin expression of single EVs captured non-specifically, revealing that tetraspanin capture can bias the apparent multiplexed tetraspanin profile. Finally, we demonstrate that this bias can have significant impact on diagnostic sensitivity for tumor-associated EV surface markers. CONCLUSION: Our findings may reveal key insights into protein expression heterogeneity of EVs that better inform EV capture and detection platforms for diagnostic or other downstream use.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles , Tetraspanins/metabolism , Cell Line, Tumor , Female , Flow Cytometry , Fluorescence , Humans , Mesenchymal Stem Cells , Ovarian Neoplasms/metabolism , Sensitivity and Specificity , Tetraspanins/genetics
11.
Nanoscale Adv ; 3(14): 4119-4132, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34355118

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aß) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aß associated with AD. However, characterization of the EVs-associated Aß and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aß present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aß is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aß peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aß associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aß that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.

12.
ACS Sens ; 5(9): 2820-2833, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32935542

ABSTRACT

For more effective early-stage cancer diagnostics, there is a need to develop sensitive and specific, non- or minimally invasive, and cost-effective methods for identifying circulating nanoscale extracellular vesicles (EVs). Here, we report the utilization of a simple plasmonic scaffold composed of a microscale biosilicate substrate embedded with silver nanoparticles for surface-enhanced Raman scattering (SERS) analysis of ovarian and endometrial cancer EVs. These substrates are rapidly and inexpensively produced without any complex equipment or lithography. We extensively characterize the substrates with electron microscopy and outline a reproducible methodology for their use in analyzing EVs from in vitro and in vivo biofluids. We report effective chemical treatments for (i) decoration of metal surfaces with cysteamine to nonspecifically pull down EVs to SERS hotspots and (ii) enzymatic cleavage of extraluminal moieties at the surface of EVs that prevent localization of complementary chemical features (lipids/proteins) to the vicinity of the metal-enhanced fields. We observe a major loss of sensitivity for ovarian and endometrial cancer following enzymatic cleavage of EVs' extraluminal domain, suggesting its critical significance for diagnostic platforms. We demonstrate that the SERS technique represents an ideal tool to assess and measure the high heterogeneity of EVs isolated from clinical samples in an inexpensive, rapid, and label-free assay.


Subject(s)
Extracellular Vesicles , Metal Nanoparticles , Biocompatible Materials , Liquid Biopsy , Porosity , Silver
SELECTION OF CITATIONS
SEARCH DETAIL