Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Impot Res ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806628

ABSTRACT

There is growing evidence that endocrine disruptive chemicals have deleterious effects on sexual and reproductive function. To examine subjective sexual functions in human females and their relationship to postnatal phthalate exposure and perinatal androgenization, a Sexuality Score (SS) was established from a first-stage survey questionnaire of subjective sexual function filled out by female university students (n = 68; average age 25.23 ± 5.17 years; rural 25.51 ± 6.74 vs. urban 25.85 ± 1.43 years). Seventeen phthalate metabolites in urine samples were analyzed by high-performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). Females were also assessed for the 2D:4D digit ratio as an index of perinatal androgenization. The mean age of menarche was 12.82 ± 1.35 years (rural 12.59 ± 1.39 vs. urban 13.18 ± 1.27; p = 0.01). The mean age at first sexual intercourse was 14.88 ± 6.89 years (rural 14.62 ± 7.20 vs. urban 15.24 ± 6.55), and as the age of first sexual intercourse increases, the SS score tends to increase as well, albeit moderately (r = 0.25, p = 0.037). Mono-iso-butyl phthalate, mono(2-ethyl-5-carboxypentyl) phthalate, mono(hydroxy-n-butyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate (p ≤ 0.05) and mono(2-carboxymethylhexyl) phthalate (p ≤ 0.01) were negatively associated with SS. A compounding butterfly effect of prenatal exposure to androgens was observed with disruptive effects of mono(2-ethyl-5-oxohexyl) phthalate and mono(2-ethyl-5-carboxypentyl) phthalate on sexual function. Exposure to phthalates in adult females may lead to disruption of subjective sexual function, especially concerning sexual desire and sexual satisfaction, and perinatal androgenization could augment these effects.

2.
Reprod Biol ; 23(3): 100795, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586298

ABSTRACT

The aim of the present in-vitro experiments was to examine the direct influence of ghrelin and obestatin on viability, proliferation and progesterone release by human ovarian granulosa cells and their response to FSH administration. Human granulosa cells were cultured in presence of ghrelin or obestatin (both at 0, 1, 10 or 100 ng/ml) alone or in the presence of FSH (10 ng/ml). Cell viability, accumulation of proliferation markers PCNA and cyclin B1 and release of progesterone were analyzed by Trypan blue extrusion test, quantitative immunocytochemistry and ELISA. Ghrelin, obestatin and FSH up-regulated all the measured ovarian cell parameters. Moreover, both ghrelin and obestatin promoted all the stimulatory effects of FSH. The obtained results demonstrate the direct stimulatory action of ghrelin, obestatin and FSH on basic ovarian cell functions, as well as the ability of metabolic hormones to improve FSH action on human ovarian cells.


Subject(s)
Ghrelin , Progesterone , Female , Humans , Progesterone/pharmacology , Progesterone/metabolism , Ghrelin/metabolism , Granulosa Cells , Ovary , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Cells, Cultured , Cell Proliferation , Apoptosis
3.
Reprod Sci ; 30(8): 2537-2546, 2023 08.
Article in English | MEDLINE | ID: mdl-36881337

ABSTRACT

The release of epidermal growth factor ligand epiregulin (EREG) by human ovarian granulosa cells, its direct action on basic ovarian cell functions, and interrelationships with gonadotropins were investigated. We examined (1) the ovarian production of EREG (the time-dependent accumulation of EREG in the medium incubated with human ovarian granulosa cells, and (2) the effect of the addition of EREG (0, 1, 10, and 100 ng.ml-1) given alone or in combination with FSH or LH (100 ng.ml-1) on basic granulosa cells functions. Viability, proliferation (accumulation of PCNA and cyclin B1) and apoptosis (accumulation of bax and caspase 3), the release of steroid hormones (progesterone, testosterone, and estradiol), and prostaglandin E2 (PGE2) were analyzed by using the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. A significant time-dependent accumulation of EREG in a medium cultured with human granulosa cells with a peak at 3 and 4 days was observed. The addition of EREG alone increased cell viability, proliferation, progesterone, testosterone, and estradiol release, decreased apoptosis, bud did not affect PGE2 release. The addition of either FSH or LH alone increased cell viability, proliferation, progesterone, testosterone, estradiol, and PGE2 release and decreased apoptosis. Furthermore, both FSH and LH mostly promoted the stimulatory action of EREG on granulosa cell functions. These results demonstrated, that EREG produced by ovarian cells can be an autocrine/paracrine stimulator of human ovarian cell functions. Furthermore, they demonstrate the functional interrelationship between EREG and gonadotropins in the control of ovarian functions.


Subject(s)
Dinoprostone , Progesterone , Female , Humans , Progesterone/metabolism , Epiregulin/metabolism , Epiregulin/pharmacology , Dinoprostone/metabolism , Cell Proliferation , Gonadotropins/metabolism , Granulosa Cells/metabolism , Apoptosis , Epidermal Growth Factor/pharmacology , Estradiol/pharmacology , Estradiol/metabolism , Follicle Stimulating Hormone/metabolism , Testosterone/metabolism , Cells, Cultured
4.
Reprod Fertil Dev ; 34(18): 1146, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36383215

ABSTRACT

CONTEXT: The role of metabolic hormones, medicinal plants and their interrelationships in the control of human reproductive processes are poorly understood. AIMS: To examine how leptin, obestatin and ginkgo (Ginkgo biloba L.) affect human ovarian hormone release. METHODS: We analysed the influence of leptin and obestatin alone and in combination with ginkgo extract on cultured human ovarian granulosa cells. The release of progesterone (P), insulin-like growth factor I (IGF-I), oxytocin (OT) and prostaglandin F (PGF) were analysed by enzyme immunoassay and enzyme-linked immunosorbent assay. KEY RESULTS: Leptin addition promoted the release of all the measured hormones. Obestatin stimulated the release of P, IGF-I and OT and inhibited PGF output. Ginkgo suppressed P, IGF-I and OT and promoted PGF release. Furthermore, ginkgo changed the stimulatory action of leptin on PGF to an inhibitory one. CONCLUSIONS: Leptin and obestatin are involved in the control of human ovarian hormone release and ginkgo influences their function. IMPLICATIONS: Leptin and obestatin could be useful as stimulators of human ovarian cell functions. The suppressive influence of ginkgo on ovarian function should lead to the development of ginkgo-containing drugs.

5.
Reprod Fertil Dev ; 34(18): 1128-1134, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36309990

ABSTRACT

CONTEXT: The role of metabolic hormones, medicinal plants and their interrelationships in the control of human reproductive processes are poorly understood. AIMS: To examine how leptin, obestatin and ginkgo (Ginkgo biloba L.) affect human ovarian hormone release. METHODS: We analysed the influence of leptin and obestatin alone and in combination with ginkgo extract on cultured human ovarian granulosa cells. The release of progesterone (P), insulin-like growth factor I (IGF-I), oxytocin (OT) and prostaglandin F (PGF) were analysed by enzyme immunoassay and enzyme-linked immunosorbent assay. KEY RESULTS: Leptin addition promoted the release of all the measured hormones. Obestatin stimulated the release of P, IGF-I and OT and inhibited PGF output. Ginkgo suppressed P, IGF-I and OT and promoted PGF release. Furthermore, ginkgo changed the stimulatory action of leptin on PGF to an inhibitory one. CONCLUSIONS: Leptin and obestatin are involved in the control of human ovarian hormone release and ginkgo influences their function. IMPLICATIONS: Leptin and obestatin could be useful as stimulators of human ovarian cell functions. The suppressive influence of ginkgo on ovarian function should lead to the development of ginkgo-containing drugs.


Subject(s)
Ghrelin , Ginkgo biloba , Granulosa Cells , Leptin , Plant Preparations , Female , Humans , Cells, Cultured , Ghrelin/pharmacology , Ginkgo biloba/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Leptin/pharmacology , Progesterone/metabolism , Prostaglandins F/metabolism , Plant Preparations/pharmacology
6.
Children (Basel) ; 9(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36291497

ABSTRACT

Phthalates alter the hormonal balance in humans during pregnancy, potentially affecting embryonic and fetal development. We studied the joint effect of exposure to phthalates, quantified by urinary phthalate metabolite concentration, and perceived psychological stress on the concentration of hormones in pregnant women (n = 90) from the Nitra region, Slovakia, up to the 15th week of pregnancy. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to determine urinary concentrations of phthalates and serum concentrations of hormones, respectively. We used Cohen perceived stress scale (PSS) to evaluate the human perception of stressful situations. Our results showed that mono(carboxy-methyl-heptyl) phthalate (cx-MiNP) and a molar sum of di-iso-nonyl phthalate metabolites (ΣDiNP) were negatively associated with luteinizing hormone (LH) (p ≤ 0.05). Mono(hydroxy-methyl-octyl) phthalate (OH-MiNP) and the molar sum of high-molecular-weight phthalate metabolites (ΣHMWP) were positively associated with estradiol (p ≤ 0.05). PSS score was not significantly associated with hormonal concentrations. When the interaction effects of PSS score and monoethyl phthalate (MEP), cx-MiNP, ΣDiNP, and ΣHMWP on LH were analyzed, the associations were positive (p ≤ 0.05). Our cross-sectional study highlights that joint psychosocial stress and xenobiotic-induced stress caused by phthalates are associated with modulated concentrations of reproductive hormones in pregnant women.

7.
Children (Basel) ; 9(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327785

ABSTRACT

Adverse birth outcomes present risk factors resulting in neonatal morbidity and mortality. Sufficient maternal hormonal concentrations are crucial for normal foetal development. Previous studies have shown a relationship between phthalate exposure and maternal hormonal levels during pregnancy. This study aims to investigate if neonatal anthropometric parameters are associated with maternal endocrine parameters during the ≤15th week of gestation and the third trimester of pregnancy concerning phthalate exposure in pregnant women from Nitra, Slovakia. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to quantify urinary concentrations of phthalates and serum concentrations of hormones and sex hormone-binding globulin (SHBG), respectively. We observed a mostly positive correlation between neonatal anthropometric parameters (gestational age, birth length, birth weight, head circumference) and maternal concentration of phthalate metabolites (p ≤ 0.05). The hierarchical multivariate regression results showed a statistically significant association between Apgar score at 5 min after delivery, gestational age, birth weight, head circumference, and maternal endocrine parameters during pregnancy (p ≤ 0.05), adjusted to phthalate metabolites. To the best of our knowledge, our study is the first to indicate that prenatal exposure to phthalates may also affect birth outcomes through interaction with the maternal endocrine system.

8.
Reprod Biol ; 22(1): 100580, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34844165

ABSTRACT

The present study aims to examine the role of kisspeptin (KP), FSH, and its receptor (FSHR), and their interrelationships in the control of basic human ovarian granulosa cells functions. We investigated: (1) the ability of granulosa cells to produce KP and FSHR, (2) the role of KP in the control of ovarian functions, and (3) the ability of KP to affect FSHR and to modify the FSH action on ovarian functions. The effects of KP alone (0, 10 and 100 ng/mL); or of KP (10 and 100 ng/mL) in combination with FSH (10 ng/mL) on cultured human granulosa cells were assessed. Viability, markers of proliferation (PCNA and cyclin B1) and apoptosis (bax and caspase 3), as well as accumulation of KP, FSHR, and steroid hormones, IGF-I, oxytocin (OT), and prostaglandin E2 (PGE2) release were analyzed by the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. KP given at a low dose (10 ng/mL) stimulated viability, proliferation, inhibited apoptosis, promoted the release of progesterone (P4), estradiol (E2), IGF-I, OT, and PGE2, the accumulation of FSHR, but not testosterone (T) release. KP given at a high dose (100 ng/mL) had the opposite, inhibitory effect. FSH stimulated cell viability, proliferation and inhibited apoptosis, promoted P4, T, E2, IGF-I, and OT, but not PGE2 release. Furthermore, KP at a low dose promoted the stimulatory effect of FSH on viability, proliferation, P4, E2, and OT release, promoted its inhibitory action on apoptosis, but did not modify its action on T, IGF-I, and PGE2 output. KP at a high dose prevented and inverted FSH action. These results suggest an intra-ovarian production and a functional interrelationship between KP and FSH/FSHR in direct regulation of basic ovarian cell functions (viability, proliferation, apoptosis, and hormones release). The capability of KP to stimulate FSHR, the ability of FSH to promote ovarian functions, as well as the similarity of KP (10 ng/mL) and FSH action on granulosa cells' viability, proliferation, apoptosis, steroid hormones, IGF-I, OT, and PGE2 release, suggest that FSH influence these cells could be mediated by KP. Moreover, the capability of KP (100 ng/mL) to decrease FSHR accumulation, basal and FSH-induced ovarian parameters, suggest that KP can suppress some ovarian granulosa cell functions via down-regulation of FSHR. These observations propose the existence of the FSH-KP axis up-regulating human ovarian cell functions.


Subject(s)
Follicle Stimulating Hormone , Granulosa Cells , Kisspeptins , Receptors, FSH , Apoptosis , Cell Proliferation , Cells, Cultured , Female , Follicle Stimulating Hormone/metabolism , Humans , Insulin-Like Growth Factor I , Kisspeptins/metabolism , Ovary , Progesterone/pharmacology
9.
Reprod Toxicol ; 102: 35-42, 2021 06.
Article in English | MEDLINE | ID: mdl-33838276

ABSTRACT

Phthalates belong to the endocrine-disrupting chemicals, altering the hormonal balance in humans during pregnancy with further effects on the reproductive system. This study aimed to investigate the associations between maternal hormone levels during early pregnancy (≤15th week of pregnancy) and reproductive markers in infant boys (n = 37; 61.67 %; average age 3.51 ±â€¯0.73 months) and girls (n = 23; 38.33 %; average age 3.30 ±â€¯0.33 months) concerning prenatal exposure to phthalates. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to quantify urinary concentrations of phthalates and serum concentrations of hormones, respectively. In Mother-Infant Study Cohort (PRENATAL), we observed positive and negative correlations between infants' reproductive markers and phthalate metabolites (p ≤ 0.05). Next, we noticed associations between the penile length and maternal testosterone (ß = 0.464) and estradiol levels (ß = -0.365) with increasing significance after adjustment to maternal mono-n-butyl phthalate (MnBP) and monobenzyl phthalate (MBzP) (p ≤ 0.05). We observed a positive association (ß = 0.337) between penile width and maternal testosterone with increasing significance after adjustment to maternal mono-iso-butyl phthalate (MiBP) (p ≤ 0.05). In a group of girls, we reported a negative association between ACD/AFD ratio and maternal follicle-stimulating hormone (FSH) and estradiol levels with increasing significance after adjustment to maternal monoethyl phthalate (MEP), MnBP, and mono(hydroxy-iso-butyl) phthalate (OH-MiBP). Our results highlight that prenatal phthalate exposure may modulate the effects of maternal hormone levels during early pregnancy on infants' reproductive markers.


Subject(s)
Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Adult , Cohort Studies , Endocrine Disruptors/toxicity , Female , Humans , Infant , Male , Pregnancy , Prenatal Exposure Delayed Effects , Reproduction , Tandem Mass Spectrometry , Testosterone
10.
Int J Mol Sci ; 21(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121141

ABSTRACT

Vulvar cancer (VC) is a specific form of malignancy accounting for 5-6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as "plasma medicine" and "plasma oncology". This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.


Subject(s)
Plasma Gases/administration & dosage , Precancerous Conditions/drug therapy , Vulvar Neoplasms/drug therapy , Female , Humans , Incidence , Plasma Gases/pharmacology , Precancerous Conditions/epidemiology , Premenopause , Vulvar Neoplasms/epidemiology , Wound Healing/drug effects
11.
Cancers (Basel) ; 12(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443784

ABSTRACT

Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.

12.
C R Biol ; 342(5-6): 186-191, 2019.
Article in English | MEDLINE | ID: mdl-31495738

ABSTRACT

The aim of our study was to understand the role of transcription factor p53 in the control of healthy human ovarian cell functions. Ovarian granulosa cells were transfected with a cDNA construct encoding p53. The intracellular accumulation of p53, of the apoptosis marker bax, and of the proliferation marker PCNA, as well as the release of progesterone (P4), insulin-like growth factor I (IGF-I), oxytocin (OT), and prostaglandin F (PGF) and E2 (PGE) were evaluated by quantitative immunocytochemistry and RIA/IRMA. Transfection with the p53 cDNA construct resulted in the accumulation of p53 and bax, in a reduced level of released PCNA and PGF, and in an increased PGE output. No changes in P4, IGF-I, and OT secretion were found. These observations are the first demonstration of the involvement of p53 in the control of healthy human ovarian cell functions, namely, in the downregulation of proliferation, in the upregulation of apoptosis, and in the alteration of PGF and PGE release, but not of P4, IGF-I, or OT.


Subject(s)
Ovary/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/physiology , Electrophoresis, Polyacrylamide Gel , Female , Green Fluorescent Proteins/genetics , Humans , Insulin-Like Growth Factor I/biosynthesis , Ovary/metabolism , Oxytocin/biosynthesis , Proliferating Cell Nuclear Antigen/biosynthesis , Prostaglandins F/biosynthesis , bcl-2-Associated X Protein/biosynthesis
13.
Int J Gynecol Cancer ; 29(4): 711-720, 2019 05.
Article in English | MEDLINE | ID: mdl-31064862

ABSTRACT

OBJECTIVES: To assess the survival of patients who have received an operation for recurrent cervical and endometrial cancer and to determine prognostic variables for improved oncologic outcome. METHODS: A retrospective multicenter analysis of the medical records of 518 patients with cervical (N = 288) or endometrial cancer (N = 230) who underwent surgery for disease recurrence and who had completed at least 1 year of follow-up. RESULTS: The median survival reached 57 months for patients with cervical cancer and 113 months for patients with endometrial cancer after surgical treatment of recurrence (p = 0.036). Histological sub-type had a significant impact on overall survival, with the best outcome in endometrial endometrioid cancer (121 months), followed by cervical squamous cell carcinoma, cervical adenocarcinoma, or other types of endometrial cancer (81 vs 35 vs 35 months; p <0.001). The site of recurrence did not significantly influence survival in cervical or in endometrial cancer. Cancer stage at first diagnosis, tumor grade, lymph node status at recurrence, progression-free interval after first diagnosis, and free resection margins were associated with improved overall survival on univariate analysis. On multivariate analysis, the stage at first diagnosis and resection margins were significant independent predictive parameters of an improved oncologic outcome. CONCLUSION: Long-term survival can be achieved via secondary cytoreductive surgery in selected patients with recurrent cervical and endometrial cancer. An excellent outcome is possible even if the recurrence site is located in the lymph nodes. The possibility of achieving complete resection should be the main criterion for patient selection.


Subject(s)
Neoplasm Recurrence, Local/surgery , Uterine Neoplasms/surgery , Adult , Aged , Cancer Survivors , Cohort Studies , Cytoreduction Surgical Procedures/methods , Female , Humans , Middle Aged , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Progression-Free Survival , Retrospective Studies , Salvage Therapy/methods , Survival Rate , Treatment Outcome , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/surgery , Uterine Neoplasms/mortality , Uterine Neoplasms/pathology
14.
Eur J Pharmacol ; 854: 70-78, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30959047

ABSTRACT

The aim of the present in vitro study was to compare the effects of synthetic and plant-derived mTOR regulators on healthy human ovarian cells. We compared the effect of two synthetic mammalian mTOR blockers MC2141 and MC2183 with that of natural/plant-derived mTOR blocker rapamycin and mTOR activator resveratrol on cultured human ovarian granulosa cells. We evaluated the accumulation of markers for the mTOR system (sirtuin 1; SIRT 1), proliferation (PCNA), and apoptosis (caspase 3) along with the expression of the transcription factor p53 by quantitative immunocytochemistry. It was observed that MC2183 but not MC2141 or rapamycin reduced SIRT 1 accumulation. MC2141, MC2183, and rapamycin inhibited the accumulation of PCNA, caspase 3, and p53. On the contrary, resveratrol promoted the accumulation of SIRT-1, PCNA, caspase 3, and p53. We have demonstrated the involvement of the mTOR system in the regulation of healthy human ovarian cell proliferation and apoptosis for the first time and indicated that the action of mTOR regulators on ovarian cell apoptosis can be mediated by p53. We have further shown that mTOR regulators can affect ovarian functions without any changes in SIRT-1 accumulation and that the stimulatory effects of resveratrol on analyzed ovarian cell functions are opposite to the inhibitory effects of rapamycin and synthetic mTOR blockers.


Subject(s)
Biological Products/pharmacology , Ovary/cytology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line , Cell Proliferation/drug effects , Female , Humans , Quinazolinones/pharmacology , Resveratrol/pharmacology , Sirolimus/pharmacology , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism
15.
C R Biol ; 342(3-4): 90-96, 2019.
Article in English | MEDLINE | ID: mdl-31028003

ABSTRACT

The objective of our study was to elucidate the role of the transcription factor CREB-1 in controlling ovarian cell proliferation, apoptosis, and hormone release and the significance of CREB-1 phosphorylation in these processes. Human ovarian granulosa cells were transfected with a gene construct encoding wild-type CREB-1 (CREB-1 WT) or CREB-1 nonphosphorylatable mutant (CREB-1 M1). The expression of total and phosphorylated CREB-1, markers of proliferation (PCNA) and apoptosis (bax), as well as the release of progesterone, oxytocin, prostaglandin F2 alpha (PGF2), prostaglandin E2 (PGE2), and insulin-like growth factor I (IGF-I) were compared by immunocytochemistry, enzyme immunoassay (EIA), and immunoradiometric assay (IRMA). Transfection with CREB-1 WT or CREB-1 M1 increased total CREB-1 expression and proliferation and decreased the release of oxytocin, PGE2, and IGF-I by ovarian cells. CREB-1 M1, not CREB-1 WT, promoted apoptosis and inhibited progesterone output. PGF2 release was inhibited by CREB-1 WT but stimulated by CREB-1 M1 construct. Phosphorylated CREB-1 was undetected in any cell group. These observations confirm the involvement of CREB-1 in the control of ovarian cell proliferation, apoptosis, and steroid hormone release. This is the first demonstration of the involvement of CREB-1 in the regulation of the ovarian non-steroidal hormones such as oxytocin, PGF2, PGE2, and IGF-I. The absence of CREB-1 phosphorylation, similar effects exerted by CREB-1 WT and CREB-1 M1 on cell proliferation and release of oxytocin, PGE2, and IGF-I, and the influence of CREB-1 M1 on apoptosis and progesterone suggest that phosphorylation plays no role in the action of CREB-1 on the majority of analyzed functions of human ovarian cells.


Subject(s)
Cell Proliferation/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Ovary/physiology , Phosphorylation/physiology , Adult , Animals , Apoptosis/physiology , Cells, Cultured , Female , Granulosa Cells/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Oxytocin/metabolism , Progesterone/metabolism
16.
Molecules ; 24(5)2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30836718

ABSTRACT

There is an increasing awareness of the importance of a diet rich in fruits and vegetables for human health. Cancer stem cells (CSCs) are characterized as a subpopulation of cancer cells with aberrant regulation of self-renewal, proliferation or apoptosis leading to cancer progression, invasiveness, metastasis formation, and therapy resistance. Anticancer effects of phytochemicals are also directed to target CSCs. Here we provide a comprehensive review of dietary phytochemicals targeting CSCs. Moreover, we evaluate and summarize studies dealing with effects of dietary phytochemicals on CSCs of various malignancies in preclinical and clinical research. Dietary phytochemicals have a significant impact on CSCs which may be applied in cancer prevention and treatment. However, anticancer effects of plant derived compounds have not yet been fully investigated in clinical research.


Subject(s)
Neoplasms/diet therapy , Neoplastic Stem Cells/drug effects , Phytochemicals/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Eating , Fruit/chemistry , Humans , Signal Transduction/drug effects , Vegetables/chemistry
17.
Funct Integr Genomics ; 15(3): 271-5, 2015 May.
Article in English | MEDLINE | ID: mdl-25403593

ABSTRACT

MicroRNAs (miRNAs) are known to influence ovarian cell proliferation, apoptosis and hormone release, but it remains unknown whether miRNAs affect ovarian functions via transcription factors. We examined the effect of miRNAs on nuclear factor-κappaB (NF-kB) (p65) expression in human ovarian luteinized granulosa cells. We transfected cultured primary human ovarian luteinized granulosa cells with 80 different constructs encoding human pre-miRNAs and then evaluated NF-kB (p65) expression (percentage of cells containing p65) by immunocytochemistry. We found that 21 of the constructs stimulated NF-kB (p65) expression and 18 of the constructs inhibited NF-kB (p65) expression. This is the first direct demonstration that miRNAs affect NF-kB (p65) expression and the first genome-scale miRNA screen to identify upregulation and downregulation of NF-kB accumulation by miRNAs in the ovary. Novel miRNAs that affect the NF-kB signalling pathway could be useful for the control of NF-kB-dependent reproductive processes and the treatment of NF-kB-dependent reproductive disorders.


Subject(s)
Granulosa Cells/metabolism , MicroRNAs/metabolism , Transcription Factor RelA/metabolism , Adult , Cell Survival , Cells, Cultured , Female , Humans , MicroRNAs/genetics , Transfection
18.
Microrna ; 3(1): 29-36, 2014.
Article in English | MEDLINE | ID: mdl-25069510

ABSTRACT

Our study aimed to examine the role of micro RNA Mir15a in control of basic ovarian cell functions: proliferation, apoptosis, and secretory activity. In the first series of experiments, primary human ovarian granulosa cells were transfected with antisense construct blocking Mir15a (anti-Mir15a) and cultured without hormonal treatments. Accumulation of markers of proliferation (MAPK/ERK1,2 and PCNA) and apoptosis (caspase 3 and bax), and release of steroid hormones (progesterone, testosterone, and estradiol) were evaluated by immunocytochemical analysis and by enzyme immunoassay. In the second series of experiments, granulosa cells were transfected with gene construct encoding Mir15a precursor (pre-Mir15a) and cultured with and without follicle-stimulating hormone (FSH; 0, 1, 10, and 100 ng/ml). Expression of markers of proliferation (MAPK/ERK1,2) apoptosis (caspase 3), and steroidogenesis (release of progesterone, testosterone, and estradiol) were evaluated. Transfection of cells with anti-Mir15a resulted in a significant increase in accumulation of both proliferation and apoptosis markers, a reduction in progesterone and testosterone release, and an increase in estradiol release. Transfection of cells with pre-Mir15a had an opposite effect: it reduced accumulation of proliferation- and apoptosis-related proteins MAPK/ERK1,2 and caspase 3, and promoted release of progesterone and testosterone, but not estradiol. Moreover, pre-Mir15a reversed the effect of FSH on caspase 3, progesterone, and testosterone, but not on MAPK/ERK1,2 and estradiol. Our observations demonstrate involvement of Mir15a in control of multiple ovarian functions: proliferation, apoptosis, release of progesterone, androgen, and estrogen, and response to gonadotropin. Moreover, this is the first demonstration that miRNAs can affect response of cells to hormonal regulators. We propose that Mir15 could potentially be used for control of different reproductive processes.


Subject(s)
Follicle Stimulating Hormone/pharmacology , Granulosa Cells/physiology , Hormones/metabolism , MicroRNAs/genetics , Adult , Apoptosis , Cell Proliferation/drug effects , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Humans , MicroRNAs/antagonists & inhibitors
20.
J Cell Physiol ; 223(1): 49-56, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20039279

ABSTRACT

Previous studies have shown that microRNAs (miRNAs) can control steroidogenesis in cultured granulosa cells. In this study we wanted to determine if miRNAs can also affect proliferation and apoptosis in human ovarian cells. The effect of transfection of cultured primary ovarian granulosa cells with 80 different constructs encoding human pre-miRNAs on the expression of the proliferation marker, PCNA, and the apoptosis marker, Bax was evaluated by immunocytochemistry. Eleven out of 80 tested miRNA constructs resulted in stimulation, and 53 miRNAs inhibited expression of PCNA. Furthermore, 11 of the 80 miRNAs tested promoted accumulation of Bax, while 46 miRNAs caused a reduction in Bax in human ovarian cells. In addition, two selected antisense constructs that block the corresponding miRNAs mir-15a and mir-188 were evaluated for their effects on expression of PCNA. An antisense construct inhibiting mir-15a (which precursor suppressed PCNA) increased PCNA, whereas an antisense construct for mir-188 (which precursor did not change PCNA) did not affect PCNA expression. Verification of effects of selected pre-mir-10a, mir-105, and mir-182 by using other markers of proliferation (cyclin B1) and apoptosis (TdT and caspase 3) confirmed specificity of miRNAs effects on these processes. This is the first direct demonstration of the involvement of miRNAs in controlling both proliferation and apoptosis by ovarian granulose cells, as well as the identification of miRNAs promoting and suppressing these processes utilizing a genome-wide miRNA screen.


Subject(s)
Apoptosis , Cell Proliferation , Granulosa Cells/metabolism , MicroRNAs/metabolism , Adult , Caspase 3/metabolism , Cells, Cultured , Cyclin B1/metabolism , Female , Gene Expression Regulation , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Proliferating Cell Nuclear Antigen/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transfection , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL