Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bioorg Chem ; 147: 107352, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640719

Glypican-3 (GPC3) is markedly overexpressed in hepatocellular carcinoma (HCC) and not expressed in normal liver tissues. In this study, a novel peptide PET imaging agent ([18F]AlF-NOTA-IPB-GPC3P) was developed to target GPC3 expressed in tumors. The overall radiochemical yield of [18F]AlF-NOTA-IPB-GPC3P was 10-15 %, and its lipophilicity, expressed as the logD value at a pH of 7.4, was -1.18 ± 0.06 (n = 3). Compared to the previously reported tracer [18F]AlF-GP2633, [18F]AlF-NOTA-IPB-GPC3P exhibited higher cellular uptake (15.13 vs 5.96) and internalized rate (80.63 % vs 35.93 %) in Huh7 cells at 120 min. Micro-PET/CT and biodistribution studies further demonstrated that [18F]AlF-NOTA-IPB-GPC3P exhibited significantly increased tumor uptake and prolonged tumor residence in Huh7 tumors compared to [18F]AlF-GP2633 (4.66 ± 0.22 % ID/g vs 0.72 ± 0.09 % ID/g at 60 min, p < 0.001; 5.05 ± 0.23 % ID/g vs 0.35 ± 0.08 % ID/g at 120 min, p < 0.001, respectively). Furthermore, the tumor-to-organ ratios of [18F]AlF-NOTA-IPB-GPC3P surpassed those of [18F]AlF-GP2633. Our results support the utilization of [18F]AlF-NOTA-IPB-GPC3P as a PET imaging agent targeting the GPC3 receptor for tumor detection.


Fluorine Radioisotopes , Glypicans , Positron-Emission Tomography , Animals , Humans , Mice , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Fluorine Radioisotopes/chemistry , Glypicans/metabolism , Heterocyclic Compounds, 1-Ring , Liver Neoplasms/diagnostic imaging , Mice, Nude , Molecular Structure , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Structure-Activity Relationship , Tissue Distribution
3.
Bioorg Chem ; 145: 107193, 2024 Apr.
Article En | MEDLINE | ID: mdl-38442611

Immunotherapy has brought great benefits to cancer patients, but only some patients benefit from it. Noninvasive, real-time and dynamic monitoring of the effectiveness of immunotherapy through PET imaging may provide assistance for the treatment plan of immunotherapy. In this study, we designed and synthesized a new targeted PD-L1 peptide NOTA-PEG2-Asp2-PDL1P, which was labeled with nuclide 18F to obtain a new imaging agent [18F]AlF-NOTA-PEG2-Asp2-PDL1P. The total radiochemical yield of [18F]AlF-NOTA-PEG2-Asp2-PDL1P was 13.7 % (Uncorrected radiochemical yield, n > 5). [18F]AlF-NOTA-PEG2-Asp2-PDL1P achieved high radiochemical purity (>95 %) with a molar activity more than 51.2 GBq/µmol. [18F]AlF-NOTA-PEG2-Asp2-PDL1P exhibited good hydrophilicity and had good stability both in vivo and in vitro, it can specifically targets B16F10 tumor with PD-L1 expression, and had a relatively high retention in tumor, a relatively fast clearance in vivo and a higher tumor-to-non-target ratio, all of which could make [18F]AlF-NOTA-PEG2-Asp2-PDL1P a potential tracer for PD-L1 prediction before clinical immunotherapy.


Heterocyclic Compounds, 1-Ring , Heterocyclic Compounds , Neoplasms , Humans , Heterocyclic Compounds/chemistry , Molecular Probes , B7-H1 Antigen/metabolism , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Cell Line, Tumor
4.
J Nanobiotechnology ; 19(1): 171, 2021 Jun 08.
Article En | MEDLINE | ID: mdl-34103070

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of head and neck malignant tumor with a high incidence in specific regional distribution, and its traditional therapies face some challenges. It has become an urgent need to seek new therapeutic strategies without or with low toxicity and side effects. At present, more and more researchers has been attracting attention by nanotheranostic platform. Therefore, our team synthesized the polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X (USPIO-PEG-sLex) nanotheranostic platform with high temperature pyrolysis. RESULTS: The USPIO-PEG-sLex nanoparticles had excellent photothermal conversion property, and the temperature of USPIO-PEG-sLex nanoparticles solution increased with its concentration and power density of near-infrared (NIR) on 808 nm wavelengths. Five USPIO-PEG-sLex nanoparticles with different concentrations of 0 mg/ml, 0.025 mg/ml, 0.05 mg/ml, 0.1 mg/ml and 0.2 mg/ml were prepared. The biological toxicity results showed that the viability of NPC 5-8F cells is related to the concentration of USPIO-PEG-sLex nanoparticles and the culture time (P < 0.001). The results of photothermal therapy (PTT) in vitro indicated that the viability of 5-8F cells decreased significantly with the concentration of USPIO-PEG-sLex nanoparticles increases (P < 0.001), and the viability of NPC 5-8F cells were 91.04% ± 5.20%, 77.83% ± 3.01%, 73.48% ± 5.55%, 59.50% ± 10.98%, 17.11% ± 3.14%, respectively. The USPIO-PEG-sLex nanoparticles could target the tumor area, and reduce the T2* value of tumor tissue. The T2* values of tumor pre- and post-injection were 30.870 ± 5.604 and 18.335 ± 4.351, respectively (P < 0.001). In addition, USPIO-PEG-sLex nanoparticles as a photothermal agent for PTT could effectively inhibit tumor progression. The ratio of volume change between tail vein injection group, control group, nanoparticles without laser irradiation group and blank group after 5 treatments were 3.04 ± 0.57, 5.80 ± 1.06, 8.09 ± 1.96, 7.89 ± 2.20, respectively (P < 0.001). CONCLUSIONS: Our synthesized USPIO-PEG-sLex nanotheranostic platform, and it may be become a new strategy for the treatment of NPC.


Dextrans/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Nasopharyngeal Carcinoma/drug therapy , Photothermal Therapy/methods , Polyethylene Glycols/chemistry , Sialyl Lewis X Antigen/pharmacology , Theranostic Nanomedicine/methods , Animals , Cell Line, Tumor , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred BALB C , Mice, Nude , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Neoplasms , Phototherapy , Sialyl Lewis X Antigen/chemistry
...