Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Microorganisms ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37894092

ABSTRACT

The COVID-19 pandemic has highlighted the urgent need for accurate, rapid, and cost-effective diagnostic methods to identify and track the disease. Traditional diagnostic methods, such as PCR and serological assays, have limitations in terms of sensitivity, specificity, and timeliness. To investigate the potential of using protein-peptide hybrid microarray (PPHM) technology to track the dynamic changes of antibodies in the serum of COVID-19 patients and evaluate the prognosis of patients over time. A discovery cohort of 20 patients with COVID-19 was assembled, and PPHM technology was used to track the dynamic changes of antibodies in the serum of these patients. The results were analyzed to classify the patients into different disease severity groups, and to predict the disease progression and prognosis of the patients. PPHM technology was found to be highly effective in detecting the dynamic changes of antibodies in the serum of COVID-19 patients. Four polypeptide antibodies were found to be particularly useful for reflecting the actual status of the patient's recovery process and for accurately predicting the disease progression and prognosis of the patients. The findings of this study emphasize the multi-dimensional space of peptides to analyze the high-volume signals in the serum samples of COVID-19 patients and monitor the prognosis of patients over time. PPHM technology has the potential to be a powerful tool for tracking the dynamic changes of antibodies in the serum of COVID-19 patients and for improving the diagnosis and prognosis of the disease.

2.
China Tropical Medicine ; (12): 162-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979610

ABSTRACT

@#Abstract: Objective To investigate the influence of the variation of SARS-CoV-2 on the clinical feature, and to provide early warning signs for the variation of SARS-CoV-2 in clinical work. Methods From Jan 2, 2021 to Jun 30, 2021, a total of 105 COVID-19 patients were included in the study using a case-control method. Nasal swab samples were collected from the study subjects, the viral genes were sequenced, and patients were divided into Delta variant group and non-Delta variant group according to their gene sequences. Clinically relevant data were collected from the two groups, and indicators such as days of hospitalization, age distribution, lymphocytes, neutrophils, B lymphocytes, NK cells, IL-4, and IL-10 were compared; subgroup analysis was performed based on the number of days of viral negativity in the study subjects as the basis for grouping, and differences in immunological characteristics were compared, including lymphocytes, neutrophils, B lymphocytes, NK cells, IL-4, IL-10, etc. Results The theoretical hospitalization days of Delta variant group were (22.2±8.33) d, which were significantly longer than (17.6±10.50) d of non-Delta variant group (t=2.396, P<0.05). The total lymphocyte count and IL-4 of Delta variant group were (1.22±0.86) ×109/L and (0.80±0.23) ng/mL, which were significantly lower than corresponding (1.91±0.70) ×109/L and (1.59±0.59) ng/mL of non-Delta variant group (t=4.329, 9.072, P<0.05), while IL-10 was (7.16±7.77) ng/mL, which was significantly higher than (4.26±3.91) ng/mL of non-Delta mutation group (t=1.980, P<0.05). Subgroup analysis showed that the total lymphocyte count and IL-4 concentration in Delta variant group were (1.04±0.60) ×109/L and (0.74±0.25) ng/ml, which were significantly lower than corresponding (1.62±0.56) ×109/L and (1.56±0.52) ng/mL in non-Delta variant group, in patients with delayed discharge (P<0.05). Conclutions SARS-CoV-2 variant has an impact on clinical manifestations. The patient's B cell count and IL-10 concentration increased or IL-2 and IL-4 concentration decreased within 12 hours of admission indicated variant virus infection. The decrease of total lymphocyte count, especially T lymphocyte reduction, strongly suggests discharge delay due to viral clearance disorder.

4.
Nat Commun ; 13(1): 3979, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810174

ABSTRACT

Despite timely immunization programs, and efficacious vaccines conveying protection against SARS-CoV-2 infection, breakthrough infections in vaccinated individuals have been reported. The Delta variant of concern (VOC) outbreak in Guangzhou resulted in local transmission in vaccinated and non-vaccinated residents, providing a unique opportunity to study the protective effects of the inactivated vaccines in breakthrough infection. Here, we find that the 2-dose vaccinated group has similar peak viral titers and comparable speeds of viral RNA clearance to the non-vaccinated group but accelerated viral suppression in the middle course of the disease. We quantitatively demonstrate that peak viral pneumonia is significantly mitigated in the 2-dose vaccine group (median 0.298%) compared with the non-vaccinated (5.77%) and 1-dose vaccine (3.34%) groups. Pneumonia absorbance is approximately 6 days ahead in the 2-dose group (median 10 days) than in the non-vaccinated group (16 days) (p = 0.003). We also observe reduced cytokine inflammation and markedly undisturbed gene transcription profiles of peripheral blood mononuclear cells (PBMCs) in the 2-dose group. In short, our study demonstrates that prior vaccination substantially restrains pneumonia development, reduces cytokine storms, and facilitates clinical recovery.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Vaccination
5.
EClinicalMedicine ; 43: 101255, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35018338

ABSTRACT

BACKGROUND: The dynamic trends of pulmonary function in coronavirus disease 2019 (COVID-19) survivors since discharge have been rarely described. We aimed to describe the changes of lung function and identify risk factors for impaired diffusion capacity. METHODS: Non-critical COVID-19 patients admitted to the Guangzhou Eighth People's Hospital, China, were enrolled from March to June 2020. Subjects were prospectively followed up with pulmonary function tests at discharge, three and six months after discharge. FINDINGS: Eighty-six patients completed diffusion capacity tests at three timepoints. The mean diffusion capacity for carbon monoxide (DLCO)% pred was 79.8% at discharge and significantly improved to 84.9% at Month-3. The transfer coefficient of the lung for carbon monoxide (KCO)% pred significantly increased from 91.7% at discharge to 95.7% at Month-3. Both of them showed no further improvement at Month-6. The change rates of DLCO% pred and KCO% pred were significantly higher in 0-3 months than in 3-6 months. The alveolar ventilation (VA) improved continuously during the follow-ups. At Month-6, impaired DLCO% pred was associated with being female (OR 5.2 [1.7-15.8]; p = 0.004) and peak total lesion score (TLS) of chest CT > 8.5 (OR 6.6 [1.7-26.5]; p = 0.007). DLCO% pred and KCO% pred were worse in females at discharge. And in patients with impaired diffusion capacity, females' DLCO% pred recovered slower than males. INTERPRETATION: The first three months is the critical recovery period for diffusion capacity. The impaired diffusion capacity was more severe and recovered slower in females than in males. Early pulmonary rehabilitation and individualized interventions for recovery are worthy of further investigations.

7.
Signal Transduct Target Ther ; 6(1): 427, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916489

ABSTRACT

Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.


Subject(s)
COVID-19/blood , Hyperglycemia/blood , Insulin Resistance , Lipid Metabolism , Lipids/blood , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , COVID-19/complications , Female , Humans , Hyperglycemia/etiology , Male , Middle Aged , Retrospective Studies
8.
Emerg Microbes Infect ; 10(1): 1097-1111, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33944697

ABSTRACT

Monoclonal antibodies (mAbs) encoded by IGHV3-53 (VH3-53) targeting the spike receptor-binding domain (RBD) have been isolated from different COVID-19 patients. However, the existence and prevalence of shared VH3-53-encoded antibodies in the antibody repertoires is not clear. Using antibody repertoire sequencing, we found that the usage of VH3-53 increased after SARS-CoV-2 infection. A highly shared VH3-53-J6 clonotype was identified in 9 out of 13 COVID-19 patients. This clonotype was derived from convergent gene rearrangements with few somatic hypermutations and was evolutionary conserved. We synthesized 34 repertoire-deduced novel VH3-53-J6 heavy chains and paired with a common IGKV1-9 light chain to produce recombinant mAbs. Most of these recombinant mAbs (23/34) possess RBD binding and virus-neutralizing activities, and recognize ACE2 binding site via the same molecular interface. Our computational analysis, validated by laboratory experiments, revealed that VH3-53 antibodies targeting RBD are commonly present in COVID-19 patients' antibody repertoires, indicating many people have germline-like precursor sequences to rapidly generate SARS-CoV-2 neutralizing antibodies. Moreover, antigen-specific mAbs can be digitally obtained through antibody repertoire sequencing and computational analysis.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Base Sequence , COVID-19/blood , Case-Control Studies , Epitopes, B-Lymphocyte , Female , HEK293 Cells , Humans , Male , Middle Aged , Models, Molecular , Phylogeny , Protein Conformation , Receptors, Antigen, B-Cell/genetics
9.
J Thorac Dis ; 13(3): 1517-1530, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33841944

ABSTRACT

BACKGROUND: As the coronavirus disease 19 (COVID-19) pandemic evolves, the need for recognizing the structural pulmonary changes of the disease during early convalescence has emerged. Most studies focus on parenchymal destruction of the disease; but little is known about whether the disease affects the airway. This study was conducted to investigate the changes in airway dimensions and explore the associated factors during early convalescence in patients with COVID-19. METHODS: We retrospectively analyzed quantitative computed tomography (CT)-based airway measures of 69 patients with COVID-19 from 5 February to 17 March 2020, and 32 non-COVID-19 participants from 1 January 2018 to 31 December 2019 from Guangzhou, China. The well-established measures of wall area fraction and the square root of the wall area of a hypothetical bronchus with an inner perimeter of 10 mm, were used to describe airway wall dimensions. We described the characteristics of the dimensions and inner area of airways in 66 patients with COVID-19 at the initial and convalescent stages of the disease, and compared them with the non-COVID-19 group. Linear regression models were constructed to investigate the association of airway dimensions with duration of hospitalization or disease severity after recovery. Partial correlation coefficients were calculated to investigate whether inflammatory markers were related to airway dimensions. RESULTS: Among 66 patients with COVID-19, airway dimensions were greater during disease initiation than early convalescence, which was significantly greater than in non-COVID-19 participants. No significant difference was found between the patients with COVID-19 at the initial stage and the non-COVID-19 controls regarding the first to eighth generations of the inner area. In adjusted regression models, duration of hospitalization was negatively associated with wall area fraction of the first to the sixth generation of airways. No significant associations exist between airway dimensions and disease severity, or airway dimensions with inflammatory markers. CONCLUSIONS: Airway dimensions in patients with COVID-19 during disease initiation are greater than those in non-COVID-19 participants. Such structural airway changes continue to remain significantly greater during early convalescence. No evidence shows that disease severity or inflammatory markers are associated with airway dimensions, implying that the primary lesion attacked by COVID-19 might not be the airways.

10.
J Immunol ; 206(9): 2146-2159, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33846224

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients developing severe illness or even death. Disease severity has been associated with increased levels of proinflammatory cytokines and lymphopenia. To elucidate the atlas of peripheral immune response and pathways that might lead to immunopathology during COVID-19 disease course, we performed a peripheral blood RNA sequencing analysis of the same patient's samples collected from symptom onset to full recovery. We found that PBMCs at different disease stages exhibited unique transcriptome characteristics. We observed that SARS-CoV-2 infection caused excessive release of inflammatory cytokines and lipid mediators as well as an aberrant increase of low-density neutrophils. Further analysis revealed an increased expression of RNA sensors and robust IFN-stimulated genes expression but a repressed type I IFN production. SARS-CoV-2 infection activated T and B cell responses during the early onset but resulted in transient adaptive immunosuppression during severe disease state. Activation of apoptotic pathways and functional exhaustion may contribute to the reduction of lymphocytes and dysfunction of adaptive immunity, whereas increase in IL2, IL7, and IL15 may facilitate the recovery of the number and function of lymphocytes. Our study provides comprehensive transcriptional signatures of peripheral blood response in patients with moderate COVID-19.


Subject(s)
COVID-19/blood , Cytokines/blood , Disease Progression , Inflammation Mediators/blood , Leukocytes, Mononuclear/metabolism , RNA-Seq , SARS-CoV-2/metabolism , Adult , Aged , Female , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/virology , Longitudinal Studies , Male , Middle Aged
11.
J Med Virol ; 93(4): 2505-2512, 2021 04.
Article in English | MEDLINE | ID: mdl-33433006

ABSTRACT

To investigate the dynamic changes of Krebs von den Lungen-6 (KL-6) among patients with coronavirus disease 2019 (COVID-19) and the role of KL-6 as a noninvasive biomarker for predicting long-term lung injury, the clinical information and laboratory tests of 166 COVID-19 patients were collected, and a correlation analysis between KL-6 and other parameters was conducted. There were 17 (10.2%, 17/166) severe/critical and 149 (89.8%, 149/166) mild COVID-19 patients in our cohort. Serum KL-6 was significantly higher in severe/critical COVID-19 patients than in mild patients (median 898.0 vs. 451.2 U/ml, p < .001). KL-6 was next confirmed to be a sensitive and specific biomarker for distinguishing mild and severe/critical patients and correlate to computed tomography lung lesions areas. Serum KL-6 concentration during the follow-up period (>100 days postonset) was well correlated to those concentrations within 10 days postonset (Pearson r = .867, p < .001), indicating the prognostic value of KL-6 levels in predicting lung injury after discharge. Finally, elevated KL-6 was found to be significantly correlated to coagulation disorders, and T cells subsets dysfunctions. In summary, serum KL-6 is a biomarker for assessing COVID-19 severity and predicting the prognosis of lung injury of discharged patients.


Subject(s)
COVID-19/blood , Lung Injury/blood , Mucin-1/blood , Adult , Aged , Biomarkers/blood , COVID-19/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Lung/physiopathology , Lung Injury/diagnostic imaging , Lung Injury/physiopathology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed/methods
13.
Front Immunol ; 11: 582010, 2020.
Article in English | MEDLINE | ID: mdl-33117392

ABSTRACT

Severe COVID-19 is associated with profound lymphopenia and an elevated neutrophil to lymphocyte ratio. We applied a novel dimer avoidance multiplexed polymerase chain reaction next-generation sequencing assay to analyze T (TCR) and B cell receptor (BCR) repertoires. Surprisingly, TCR repertoires were markedly diminished during the early onset of severe disease but recovered during the convalescent stage. Monitoring TCR repertoires could serve as an indicative biomarker to predict disease progression and recovery. Panoramic concurrent assessment of BCR repertoires demonstrated isotype switching and a transient but dramatic early IgA expansion. Dominant B cell clonal expansion with decreased diversity occurred following recovery from infection. Profound changes in T cell homeostasis raise critical questions about the early events in COVID-19 infection and demonstrate that immune repertoire analysis is a promising method for evaluating emergent host immunity to SARS-CoV-2 viral infection, with great implications for assessing vaccination and other immunological therapies.


Subject(s)
B-Lymphocytes/immunology , Betacoronavirus/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , CD4 Lymphocyte Count , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Lymphopenia/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2
14.
Cell Mol Immunol ; 17(11): 1119-1125, 2020 11.
Article in English | MEDLINE | ID: mdl-33037400

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been redetected after discharge in some coronavirus disease 2019 (COVID-19) patients. The reason for the recurrent positivity of the test and the potential public health concern due to this occurrence are still unknown. Here, we analyzed the viral data and clinical manifestations of 289 domestic Chinese COVID-19 patients and found that 21 individuals (7.3%) were readmitted for hospitalization after detection of SARS-CoV-2 after discharge. First, we experimentally confirmed that the virus was involved in the initial infection and was not a secondary infection. In positive retests, the virus was usually found in anal samples (15 of 21, 71.4%). Through analysis of the intracellular viral subgenomic messenger RNA (sgmRNA), we verified that positive retest patients had active viral replication in their gastrointestinal tracts (3 of 16 patients, 18.7%) but not in their respiratory tracts. Then, we found that viral persistence was not associated with high viral titers, delayed viral clearance, old age, or more severe clinical symptoms during the first hospitalization. In contrast, viral rebound was associated with significantly lower levels of and slower generation of viral receptor-binding domain (RBD)-specific IgA and IgG antibodies. Our study demonstrated that the positive retest patients failed to create a robust protective humoral immune response, which might result in SARS-CoV-2 persistence in the gastrointestinal tract and possibly in active viral shedding. Further exploration of the mechanism underlying the rebound in SARS-CoV-2 in this population will be crucial for preventing virus spread and developing effective vaccines.


Subject(s)
Betacoronavirus/physiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Gastrointestinal Tract/virology , Pneumonia, Viral/diagnosis , Antibodies, Viral/metabolism , COVID-19 , COVID-19 Testing , Coronavirus Infections/immunology , Epitopes/immunology , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Pandemics , Pneumonia, Viral/immunology , Protein Binding , Protein Domains/immunology , SARS-CoV-2 , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Shedding
15.
Med ; 1(1): 105-113.e4, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32838353

ABSTRACT

BACKGROUND: Antiviral therapies against the novel coronavirus SARS-CoV-2, which has caused a global pandemic of respiratory illness called COVID-19, are still lacking. METHODS: Our study (ClinicalTrials.gov: NCT04252885, named ELACOI), was an exploratory randomized (2:2:1) controlled trial assessing the efficacy and safety of lopinavir/ritonavir (LPV/r) or arbidol monotherapy for treating patients with mild/moderate COVID-19. FINDINGS: This study successfully enrolled 86 patients with mild/moderate COVID-19, with 34 randomly assigned to receive LPV/r, 35 to arbidol, and 17 with no antiviral medication as control. Baseline characteristics of the three groups were comparable. The primary endpoint, the rate of positive-to-negative conversion of SARS-CoV-2 nucleic acid, was similar between groups (all p > 0.05). There were no differences between groups in the secondary endpoints, the rates of antipyresis, cough alleviation, or improvement of chest computed tomography (CT) at days 7 or 14 (all p > 0.05). At day 7, 8 (23.5%) patients in the LPV/r group, 3 (8.6%) in the arbidol group, and 2 (11.8%) in the control group showed a deterioration in clinical status from moderate to severe/critical (p = 0.206). Overall, 12 (35.3%) patients in the LPV/r group and 5 (14.3%) in the arbidol group experienced adverse events during the follow-up period. No apparent adverse event occurred in the control group. CONCLUSIONS: LPV/r or arbidol monotherapy present little benefit for improving the clinical outcome of patients hospitalized with mild/moderate COVID-19 over supportive care. FUNDING: This study was supported by project 2018ZX10302103-002, 2017ZX10202102-003-004, and Infectious Disease Specialty of Guangzhou High-level Clinical Key Specialty (2019-2021).


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Adult , Humans , Indoles , Lopinavir/adverse effects , Ritonavir/adverse effects , SARS-CoV-2 , Sulfides
18.
J Thorac Dis ; 12(5): 1811-1823, 2020 May.
Article in English | MEDLINE | ID: mdl-32642086

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been a global pandemic disease, with more than 4 million cases and nearly 300,000 deaths. Little is known about COVID-19 in patients with chronic obstructive pulmonary disease (COPD). We aimed to evaluate the influence of preexisting COPD on the progress and outcomes of COVID-19. METHODS: This was a multicenter, retrospective, observational study. We enrolled 1,048 patients aged 40 years and above, including 50 patients with COPD and 998 patients without COPD, and with COVID-19 confirmed via high-throughput sequencing or real-time reverse transcription-polymerase chain reaction, between December 11, 2019 and February 20, 2020. We collected data of demographics, pathologic test results, radiologic imaging, and treatments. The primary outcomes were composite endpoints determined by admission to an intensive care unit, the use of mechanical ventilation, or death. RESULTS: Compared with patients who had COVID-19 but not COPD, those with COPD had higher rates of fatigue (56.0% vs. 40.2%), dyspnea (66.0% vs. 26.3%), diarrhea (16.0% vs. 3.6%), and unconsciousness (8.0% vs. 1.7%) and a significantly higher proportion of increased activated partial thromboplastin time (23.5% vs. 5.2%) and D-dimer (65.9% vs. 29.3%), as well as ground-glass opacities (77.6% vs. 60.3%), local patchy shadowing (61.2% vs. 41.4%), and interstitial abnormalities (51.0% vs. 19.8%) on chest computed tomography. Patients with COPD were more likely to develop bacterial or fungal coinfection (20.0% vs. 5.9%), acute respiratory distress syndrome (ARDS) (20.0% vs. 7.3%), septic shock (14.0% vs. 2.3%), or acute renal failure (12.0% vs. 1.3%). Patients with COPD and COVID-19 had a higher risk of reaching the composite endpoints [hazard ratio (HR): 2.17, 95% confidence interval (CI): 1.40-3.38; P=0.001] or death (HR: 2.28, 95% CI: 1.15-4.51; P=0.019), after adjustment. CONCLUSIONS: In this study, patients with COPD who developed COVID-19 showed a higher risk of admission to the intensive care unit, mechanical ventilation, or death.

20.
Emerg Microbes Infect ; 9(1): 940-948, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32357808

ABSTRACT

The emerging COVID-19 caused by SARS-CoV-2 infection poses severe challenges to global public health. Serum antibody testing is becoming one of the critical methods for the diagnosis of COVID-19 patients. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and spike (S) protein after symptom onset in the intensive care unit (ICU) and non-ICU patients. 130 blood samples from 38 COVID-19 patients were collected. The levels of IgM and IgG specific to N and S protein were detected by ELISA. A series of blood samples were collected along the disease course from the same patient, including 11 ICU patients and 27 non-ICU patients for longitudinal analysis. N and S specific IgM and IgG (N-IgM, N-IgG, S-IgM, S-IgG) in non-ICU patients increased after symptom onset. N-IgM and S-IgM in some non-ICU patients reached a peak in the second week, while N-IgG and S-IgG continued to increase in the third week. The combined detection of N and S specific IgM and IgG could identify up to 75% of SARS-CoV-2 infected patients in the first week. S-IgG was significantly higher in non-ICU patients than in ICU patients in the third week. In contrast, N-IgG was significantly higher in ICU patients than in non-ICU patients. The increase of S-IgG positively correlated with the decrease of C-reactive protein (CRP) in non-ICU patients. N and S specific IgM and IgG increased gradually after symptom onset and can be used for detection of SARS-CoV-2 infection. Analysis of the dynamics of S-IgG may help to predict prognosis.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Nucleocapsid Proteins/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Antibodies, Viral/blood , C-Reactive Protein/analysis , C-Reactive Protein/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Critical Care/statistics & numerical data , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Male , Middle Aged , Nucleocapsid Proteins/blood , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/blood
SELECTION OF CITATIONS
SEARCH DETAIL