Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e14854, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089370

ABSTRACT

Background: A critical necessity before surgical resection in mesial temporal lobe epilepsy (mTLE) is lateralizing the seizure focus in the temporal lobe. This study aimed to investigate the differences in perfusion pattern changes in right and left mTLE. Methods: 42 mTLE patients (22 left and 20 right mTLE) and 14 controls were surveyed with pulsed arterial spin labeling at 3.0 T. The mean cerebral blood flow (CBF) and asymmetry index (AI) were calculated in the bilateral temporal lobe, amygdala, hippocampus, parahippocampus, and nine bilateral vascular territories ROIs. The alterations in whole-brain CBF were identified using statistical parametric mapping (SPM). Results: CBF decreased in ipsilateral sides in both epilepsy subcohorts, with right mTLE showing a significant difference in most ROIs while left mTLE exhibiting no significant change. CBF comparison of left mTLE and controls showed a significant drop in ROI analysis in left middle temporal and left intermediate posterior cerebral artery and in AI analysis in parahippocampus, distal anterior cerebral artery, distal middle cerebral artery, and intermediate anterior cerebral artery. CBF hypoperfusion was seen in ROI analysis in the left intermediate anterior cerebral artery, left middle temporal, right middle temporal, left superior temporal in the right mTLE compared to controls. Left mTLE CBF differed significantly from right mTLE CBF in right distal middle cerebral artery ROI and AI of proximal middle cerebral artery. Conclusion: Our result revealed that mTLE affects extratemporal regions and both mTLE subcohorts with different perfusion patterns, which may enhance the performance of preoperative MRI assessment in lateralization procedures.

2.
Front Hum Neurosci ; 16: 848347, 2022.
Article in English | MEDLINE | ID: mdl-35308616

ABSTRACT

The purpose of this study is to assess the efficacy of transcranial direct current stimulation (tDCS) in patients with treatment-refractory trigeminal neuralgia (TN) and examine the utility of neuroimaging methods in identifying markers of such efficacy. Six patients with classical TN refractory to maximal medical treatment, underwent tDCS (three cases inhibitory/cathodic and three cases excitatory/anodic stimulation). All patients underwent pre- and posttreatment functional magnetic resonance imaging (fMRI) during block-design tasks (i.e., Pain, Pain + tDCS, tDCS) as well as single-shell diffusion MRI (dMRI) acquisition. The precise locations of tDCS electrodes were identified by neuronavigation. Five therapeutic tDCS sessions were carried out for each patient with either anodic or cathodic applications. The Numeric Rating Scale of pain (NRS) and the Headache Disability Index (HDI) were used to score the subjective efficacy of treatment. Altered activity of regional sites was identified by fMRI and associated changes in the spinothalamocortical sensory tract (STCT) were measured by the dMRI indices of fractional anisotropy (FA) and mean diffusivity (MD). Fiber counts of the bilateral trigeminal root entry zone (REZ) were performed as an added measure of fiber loss or recovery. All patients experienced a significant reduction in pain scores with a substantial decline in HDI (P value < 0.01). Following a course of anodic tDCS, the ipsilateral caudate, globus pallidus, somatosensory cortex, and the contralateral globus pallidus showed a significantly attenuated activation whereas cathodic tDCS treatment resulted in attenuation of the thalamus and globus pallidus bilaterally, and the somatosensory cortex and anterior cingulate gyrus contralaterally. dMRI analysis identified a substantial increase (>50%) in the number of contralateral sensory fibers in the STCT with either anodic or cathodic tDCS treatment in four of the six patients. A significant reduction in FA (>40%) was observed in the ipsilateral REZ in the posttreatment phase in five of the six patients. Preliminary evidence suggests that navigated tDCS presents a promising method for alleviating the pain of TN. Different patterns of activation manifested by anodic and cathodic stimulation require further elaboration to understand their implication. Activation and attenuation of responses at various sites may provide further avenues for condition treatment.

3.
Neurol Sci ; 42(8): 3305-3325, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33389247

ABSTRACT

BACKGROUND: Advances in MRI acquisition and data processing have become important for revealing brain structural changes. Previous studies have reported widespread structural brain abnormalities and cortical thinning in patients with temporal lobe epilepsy (TLE), as the most common form of focal epilepsy. METHODS: In this research, healthy control cases (n = 20) and patients with left TLE (n = 19) and right TLE (n = 14) were recruited, all underwent 3.0 T MRI with magnetization-prepared rapid gradient echo sequence to acquire T1-weighted images. Morphometric alterations in gray matter were identified using voxel-based morphometry (VBM). Volumetric alterations in subcortical structures and cortical thinning were also determined. RESULTS: Patients with left TLE demonstrated more prevailing and widespread changes in subcortical volumes and cortical thickness than right TLE, mainly in the left hemisphere, compared to the healthy group. Both VBM analysis and subcortical volumetry detected significant hippocampal atrophy in ipsilateral compared to contralateral side in TLE group. In addition to hippocampus, subcortical volumetry found the thalamus and pallidum bilaterally vulnerable to the TLE. Furthermore, the TLE patients underwent cortical thinning beyond the temporal lobe, affecting gray matter cortices in frontal, parietal, and occipital lobes in the majority of patients, more prevalently for left TLE cases. Exploiting volume changes in individual patients in the hippocampus alone led to 63.6% sensitivity and 100% specificity for lateralization of TLE. CONCLUSION: Alteration of gray matter volumes in subcortical regions and neocortical temporal structures and also cortical gray matter thickness were evidenced as common effects of epileptogenicity, as manifested by the majority of cases in this study.


Subject(s)
Epilepsy, Temporal Lobe , Atrophy/pathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology
4.
Epilepsy Res ; 128: 158-162, 2016 12.
Article in English | MEDLINE | ID: mdl-27838503

ABSTRACT

PURPOSES: To determine 1H-MRSI metabolites changes in interictal and postictal phases of patients suffering from mesial temporal lobe epilepsy with hippocampal sclerosis and lateralization of seizure foci. MATERIALS AND METHODS: MR spectroscopic imaging was performed in 5 adult patients with refractory temporal lobe epilepsy interictally and immediately after the seizure and in 4 adult control subjects. All patients underwent MR imaging and VideoEEG Monitoring. RESULTS: The results showed statistically significant decreases in N-acetylaspartate/Creatine, N-acetylaspartate/Choline and N-acetylaspartate/(creatine+choline) immediately after ictus in ipsilateral hippocampus as compared with control data and contralateral hippocampus of patients while no statistically significant difference was presented in interictal phase. CONCLUSION: The present study clearly indicates 1H-MRS abnormalities following an ictus of temporal lobe epilepsy with metabolite recovery in interictal phase. This finding suggests postictal 1H-MRS as a possible useful tool to assist in lateralizing and localizing of seizure foci in epileptic patients with structural lesions.


Subject(s)
Drug Resistant Epilepsy/metabolism , Epilepsy, Temporal Lobe/metabolism , Seizures/metabolism , Temporal Lobe/metabolism , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Choline/metabolism , Creatinine/metabolism , Drug Resistant Epilepsy/diagnostic imaging , Electroencephalography , Epilepsy, Temporal Lobe/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Proton Magnetic Resonance Spectroscopy , Seizures/diagnostic imaging , Temporal Lobe/diagnostic imaging , Time Factors , Video Recording , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...