Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
ACS Omega ; 9(25): 26838-26862, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947800

ABSTRACT

In the rapidly evolving landscape of nanomedicine, aptamers have emerged as powerful molecular tools, demonstrating immense potential in targeted therapeutics, diagnostics, and drug delivery systems. This paper explores the computational features of aptamers in nanomedicine, highlighting their advantages over antibodies, including selectivity, low immunogenicity, and a simple production process. A comprehensive overview of the aptamer development process, specifically the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, sheds light on the intricate methodologies behind aptamer selection. The historical evolution of aptamers and their diverse applications in nanomedicine are discussed, emphasizing their pivotal role in targeted drug delivery, precision medicine and therapeutics. Furthermore, we explore the integration of artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), Internet of Medical Things (IoMT), and nanotechnology in aptameric development, illustrating how these cutting-edge technologies are revolutionizing the selection and optimization of aptamers for tailored biomedical applications. This paper also discusses challenges in computational methods for advancing aptamers, including reliable prediction models, extensive data analysis, and multiomics data incorporation. It also addresses ethical concerns and restrictions related to AI and IoT use in aptamer research. The paper examines progress in computer simulations for nanomedicine. By elucidating the importance of aptamers, understanding their superiority over antibodies, and exploring the historical context and challenges, this review serves as a valuable resource for researchers and practitioners aiming to harness the full potential of aptamers in the rapidly evolving field of nanomedicine.

2.
Open Biol ; 14(6): 230272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889771

ABSTRACT

Traditional medication and alternative therapies have long been used to treat breast cancer. One of the main problems with current treatments is that there is an increase in drug resistance in the cancer cells owing to genetic differences such as mutational changes, epigenetic changes and miRNA (microRNA) alterations such as miR-1246, miR-298, miR-27b and miR-33a, along with epigenetic modifications, such as Histone3 acetylation and CCCTC-Binding Factor (CTCF) hypermethylation for drug resistance in breast cancer cell lines. Certain forms of conventional drug resistance have been linked to genetic changes in genes such as ABCB1, AKT, S100A8/A9, TAGLN2 and NPM. This review aims to explore the current approaches to counter breast cancer, the action mechanism, along with novel therapeutic methods endowing potential drug resistance. The investigation of novel therapeutic approaches sheds light on the phenomenon of drug resistance including genetic variations that impact distinct forms of oestrogen receptor (ER) cancer, genetic changes, epigenetics-reported resistance and their identification in patients. Long-term effective therapy for breast cancer includes selective oestrogen receptor modulators, selective oestrogen receptor degraders and genetic variations, such as mutations in nuclear genes, epigenetic modifications and miRNA alterations in target proteins. Novel research addressing combinational therapies including maytansine, photodynamic therapy, guajadiol, talazoparib, COX2 inhibitors and miRNA 1246 inhibitors have been developed to improve patient survival rates.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Female , Receptors, Estrogen/metabolism , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
3.
Cell Biochem Funct ; 42(3): e4004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583079

ABSTRACT

Morganella morganii is a gram negative, facultative anaerobic rod-shaped bacterium, commonly found in environment and in the intestine of human, mammals, and reptiles as a part of their gut microbiome. M. morganii can cause Gram-negative folliculitis, black nail infection, acute retiform purpura, fetal demise, and subdural empyema. The increasing frequency of M. morganii infections generate the need for efficient methods to enrich the presence of M. morganii in clinical samples to make its detection easier. Culturomics aims to grow and maximize the number of culturable bacteria. Different methods are followed to maximize the growth of minority population of bacteria by disrupting the growth of bacteria which are present in higher concentration. This article presents a method for selective enriching the M. morganii in human fecal samples. This method includes prior incubation of fecal microbiota in an anaerobic environment, adding supplement like fecal water to give dormant bacteria a break to become active to grow to threshold concentration, and an enrichment stage which provides the additional opportunity of growing to M. morganii on the selective medium. This method also provides an ingenuous way for augmenting the growth of fecal M. morganii species.


Subject(s)
Morganella morganii , Animals , Humans , Mammals
4.
ACS Omega ; 9(6): 6165-6183, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371781

ABSTRACT

With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.

5.
Curr Issues Mol Biol ; 46(1): 585-611, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38248340

ABSTRACT

Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.

6.
Food Res Int ; 175: 113771, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129003

ABSTRACT

Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.


Subject(s)
Starch , Starch/chemistry , Porosity , Solubility , Adsorption
7.
J Med Chem ; 66(24): 17074-17085, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38103027

ABSTRACT

There are a number of reports about anticancer activity of indole derivatives. In this study, we investigated the role of indoxyl sulfate (IS) for its selective anticancer activity on colon cancer cells. IS treatment on HCT-116 and HT-29 human epithelial adenocarcinoma cells led to a decrease in cell proliferation, cell viability, and ATP content. Colon cancer cells showed a 10% increase in cell apoptosis in comparison to control. Due to IS treatment, cell morphology got distorted, cell number found decreased, intracellular vesicles formed, and cells were found floating in the media. Cells also showed a loss in membrane integrity and a decrease in colony-forming ability and ceased at the G2/M phase of the cell cycle. No significant change was noted in the level of inflammatory cytokines IL-17A, IL-1ß, and TNF-α, histology, length of intestine, and spleen after 100 mM IS treatment to balb/c mice. These observations indicate the selective anticancer effect of IS on colon cancer cells.


Subject(s)
Colonic Neoplasms , Indican , Animals , Mice , Humans , Indican/pharmacology , Apoptosis , HT29 Cells , Cell Proliferation , Colonic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL