Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(18): 6643-6660, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725490

ABSTRACT

Electrode-electrolyte interfaces play a decisive role in electrochemical charge accumulation and transfer processes. Theoretical modelling of these interfaces is critical to decipher the microscopic details of such phenomena. Different force field-based molecular dynamics protocols are compared here in a view to connect calculated and experimental charge density-potential relationships. Platinum-aqueous electrolyte interfaces are taken as a model. The potential of using experimental charge density-potential curves to transform cell voltage into electrode potential in force-field molecular dynamics simulations, and the need for that purpose of developing simulation protocols that can accurately calculate the double-layer capacitance, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL