Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
AAPS J ; 25(6): 103, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936002

ABSTRACT

The in-person workshop "Drug Dissolution in Oral Drug Absorption" was held on May 23-24, 2023, in Baltimore, MD, USA. The workshop was organized into lectures and breakout sessions. Three common topics that were re-visited by various lecturers were amorphous solid dispersions (ASDs), dissolution/permeation interplay, and in vitro methods to predict in vivo biopharmaceutics performance and risk. Topics that repeatedly surfaced across breakout sessions were the following: (1) meaning and assessment of "dissolved drug," particularly of poorly water soluble drug in colloidal environments (e.g., fed conditions, ASDs); (2) potential limitations of a test that employs sink conditions for a poorly water soluble drug; (3) non-compendial methods (e.g., two-stage or multi-stage method, dissolution/permeation methods); (4) non-compendial conditions (e.g., apex vessels, non-sink conditions); and (5) potential benefit of having both a quality control method for batch release and a biopredictive/biorelevant method for biowaiver or bridging scenarios. An identified obstacle to non-compendial methods is the uncertainty of global regulatory acceptance of such methods.


Subject(s)
Biopharmaceutics , Intestinal Absorption , Humans , Drug Liberation , Solubility , Water
2.
J Stroke Cerebrovasc Dis ; 23(5): e355-63, 2014.
Article in English | MEDLINE | ID: mdl-24582784

ABSTRACT

Our objective is to develop a new therapy for the treatment of stroke. Currently, the only effective therapy for acute ischemic stroke is the thrombolytic agent recombinant tissue plasminogen activator. α1-Antitrypsin (AAT), a serine proteinase inhibitor with potent anti-inflammatory, anti-apoptotic, antimicrobial, and cytoprotective activities, could be beneficial in stroke. The goal of this study is to test whether AAT can improve ischemic stroke outcome in an established rat model. Middle cerebral artery occlusion was induced in male rats via intracranial (i.c.) microinjection of endothelin-1. Five to 10 minutes after stroke induction, rats received either i.c. or intravenous delivery of human AAT. Cylinder and vibrissae tests were used to evaluate sensorimotor function before and 72 hours after middle cerebral artery occlusion. Infarct volumes were examined via either 2,3,5-triphenyltetrazolium chloride assay or magnetic resonance imaging 72 hours after middle cerebral artery occlusion. Despite equivalent initial strokes, at 72 hours, the infarct volumes of the human AAT treatment groups (local and systemic injection) were statistically significantly reduced by 83% and 63% (P < .0001 and P < .05, respectively) compared with control rats. Human AAT significantly limited sensory motor system deficits. Human AAT could be a potential novel therapeutic drug for the protection against neurodegeneration after ischemic stroke, but more studies are needed to investigate the protective mechanisms and efficacy in other animal models.


Subject(s)
Brain/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , alpha 1-Antitrypsin/pharmacology , Animals , Brain/blood supply , Brain/pathology , Brain/physiopathology , Cytoprotection , Disease Models, Animal , Endothelin-1 , Humans , Infarction, Middle Cerebral Artery/chemically induced , Infarction, Middle Cerebral Artery/diagnosis , Infarction, Middle Cerebral Artery/physiopathology , Injections, Intravenous , Magnetic Resonance Imaging , Male , Microinjections , Motor Activity/drug effects , Neuroprotective Agents/administration & dosage , Rats, Sprague-Dawley , Sensory Thresholds/drug effects , Time Factors , alpha 1-Antitrypsin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL