Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232739

ABSTRACT

In plants, the trehalose biosynthetic pathway plays key roles in the regulation of carbon allocation and stress adaptation. Engineering of the pathway holds great promise to increase the stress resilience of crop plants. The synthesis of trehalose proceeds by a two-step pathway in which a trehalose-phosphate synthase (TPS) uses UDP-glucose and glucose-6-phosphate to produce trehalose-6 phosphate (T6P) that is subsequently dephosphorylated by trehalose-6 phosphate phosphatase (TPP). While plants usually do not accumulate high amounts of trehalose, their genome encodes large families of putative trehalose biosynthesis genes, with many members lacking obvious enzymatic activity. Thus, the function of putative trehalose biosynthetic proteins in plants is only vaguely understood. To gain a deeper insight into the role of trehalose biosynthetic proteins in crops, we assessed the enzymatic activity of the TPS/TPP family from tomato (Solanum lycopersicum L.) and investigated their expression pattern in different tissues as well as in response to temperature shifts. From the 10 TPS isoforms tested, only the 2 proteins belonging to class I showed enzymatic activity, while all 5 TPP isoforms investigated were catalytically active. Most of the TPS/TPP family members showed the highest expression in mature leaves, and promoter-reporter gene studies suggest that the two class I TPS genes have largely overlapping expression patterns within the vasculature, with only subtle differences in expression in fruits and flowers. The majority of tomato TPS/TPP genes were induced by heat stress, and individual family members also responded to cold. This suggests that trehalose biosynthetic pathway genes could play an important role during temperature stress adaptation. In summary, our study represents a further step toward the exploitation of the TPS and TPP gene families for the improvement of tomato stress resistance.


Subject(s)
Solanum lycopersicum , Carbon , Glucose , Glucose-6-Phosphate , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Phosphates , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Recombinant Proteins , Temperature , Trehalose/genetics , Trehalose/metabolism , Uridine Diphosphate Glucose
2.
Mycorrhiza ; 28(1): 59-70, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28948352

ABSTRACT

Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-ß-D-glucoside (QDG), quercetin-4'-O-ß-D-glucoside (QMG), and isorhamnetin-4'-O-ß-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO3- or NH4+ nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH4+. No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen form can be an important factor determining mycorrhizal development and that both nitrogen form and mycorrhizas interact to influence flavonol biosynthesis.


Subject(s)
Flavonols/biosynthesis , Mycorrhizae/physiology , Nitrogen/metabolism , Onions/metabolism , Plant Proteins/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression , Nitrogen/chemistry , Onions/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/metabolism
3.
J Agric Food Chem ; 64(1): 71-7, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26694086

ABSTRACT

The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system.


Subject(s)
Antioxidants/metabolism , Flavonols/analysis , Fungi/physiology , Glucosides/analysis , Mycorrhizae/physiology , Onions/microbiology , Plant Proteins/metabolism , Catalase/metabolism , Catechol Oxidase/metabolism , Flavonols/metabolism , Glucosides/metabolism , Onions/chemistry , Onions/classification , Onions/enzymology , Peroxidase/metabolism , Plant Roots/chemistry , Plant Roots/enzymology , Plant Roots/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...