ABSTRACT
Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.
Subject(s)
Burkholderia , Symbiosis , Rhizopus , Spores, FungalABSTRACT
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Subject(s)
Ascomycota/metabolism , Lignin/metabolism , Microbial Consortia , Ascomycota/enzymology , Ascomycota/genetics , Citrobacter freundii/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal , Sphingobacterium/metabolism , Triticum/metabolismABSTRACT
nodA and nifH phylogenies for Cupriavidus nodule bacteria from native legumes in Texas and Costa Rica grouped all strains into a single clade nested among neotropical Burkholderia strains. Thus, Cupriavidus symbiotic genes were not acquired independently in different regions and are derived from other Betaproteobacteria rather than from alpha-rhizobial donors.