Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768429

ABSTRACT

Warts, Hypogammglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare immunodeficiency disease that results from impaired leukocyte trafficking (myelokathexis) predominately caused by gain-of-function variants in C-X-C chemokine receptor type 4 (CXCR4). Clinical manifestations of WHIM syndrome can differ in familial forms or in people harboring identical CXCR4 variants. All known pathogenic CXCR4 variants associated with WHIM syndrome (CXCR4WHIM) to date are localized in the intracellular C-terminus of CXCR4. We identified 4 unrelated patients with variable WHIM-like clinical presentations harboring a novel heterozygous CXCR4 variant (c.250G>C; p.D84H) localized at a highly conserved position in the transmembrane domain of the receptor outside the C-terminus. Functional characterization of the CXCR4D84Hvariant (CXCR4D84H) using patient-derived peripheral blood mononuclear cells and in vitro cellular assaysshow decreased CXCR4 internalization and increased chemotaxis in response to CXCL12, similar to known CXCR4WHIM, but also revealed unique features of CXCR4D84H signaling to cAMP, Ca2+ mobilization and AKT/ERK pathways. These findings are consistent with molecular dynamics simulations that show disruption of the Na+ binding pocket by D84H, resulting in collapse of the hydrophobic gate above and destabilization of the inactive state of CXCR4. Mavorixafor, a CXCR4 antagonist being evaluated in clinical trials for chronic neutropenia and WHIM syndrome, normalized CXCL12-mediated chemotaxis of CXCR4D84H patient lymphocytes ex vivo and improved WBC and subset counts in 1 patient with CXCR4D84H enrolled in the chronic neutropenia phase 1b clinical trial (NCT04154488). The present study expands the current understanding of CXCR4 function and genotype-phenotype correlations in WHIM syndrome and in people with WHIM-like phenotypes.

2.
Nat Prod Res ; : 1-6, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732610

ABSTRACT

This study investigated the bioactivity of both aerial (GNAR) and underground (GNUG) parts of Gymnadenia nigra Rchb.f. (syn. Nigritella nigra (L.) Rchb. f.) (Orchidaceae). The obtained data proved interesting when the samples were tested in two adrenocortical cancer cell lines (SW13 and H295R). In particular, the GNAR 80% methanol extract distinctly inhibited their viability after 24 h at a concentration of 1 µg/µL by MTT assay and trypan blue dye exclusion method. Cell morphology evaluation by means Wright's staining also showed significant results, particularly in SW13 cells under the effect of both extracts. GNAR extract was able to scavenge the DPPH radical better than GNUG extract. It also was more active in albumin denaturation (a maximum % denaturation equal to 463.0 ± 8.3 vs 77.3 ± 13.3) and protease inhibition (a maximum % inhibition equal to 138.5 ± 7.0 vs 2.1 ± 2.0) tests. The results highlighted an important antitumor activity of G. nigra in vitro that deserves to be further studied.

3.
Front Physiol ; 11: 554904, 2020.
Article in English | MEDLINE | ID: mdl-33117189

ABSTRACT

Recently, the role of mitochondrial activity in high-energy demand organs and in the orchestration of whole-body metabolism has received renewed attention. In mitochondria, pyruvate oxidation, ensured by efficient mitochondrial pyruvate entry and matrix dehydrogenases activity, generates acetyl CoA that enters the TCA cycle. TCA cycle activity, in turn, provides reducing equivalents and electrons that feed the electron transport chain eventually producing ATP. Mitochondrial Ca2+ uptake plays an essential role in the control of aerobic metabolism. Mitochondrial Ca2+ accumulation stimulates aerobic metabolism by inducing the activity of three TCA cycle dehydrogenases. In detail, matrix Ca2+ indirectly modulates pyruvate dehydrogenase via pyruvate dehydrogenase phosphatase 1, and directly activates isocitrate and α-ketoglutarate dehydrogenases. Here, we will discuss the contribution of mitochondrial Ca2+ uptake to the metabolic homeostasis of organs involved in systemic metabolism, including liver, skeletal muscle, and adipose tissue. We will also tackle the role of mitochondrial Ca2+ uptake in the heart, a high-energy consuming organ whose function strictly depends on appropriate Ca2+ signaling.

4.
Methods Mol Biol ; 1925: 1-14, 2019.
Article in English | MEDLINE | ID: mdl-30674012

ABSTRACT

Aequorin, a 22 kDa protein produced by the jellyfish Aequorea victoria, was the first probe used to measure Ca2+ concentrations ([Ca2+]) of specific intracellular organelles in intact cells. After the binding of Ca2+ to three high-affinity binding sites, an irreversible reaction occurs leading to the emission of photons that is proportional to [Ca2+]. While native aequorin is suitable for measuring cytosolic [Ca2+] after cell stimulation in a range from 0.5 to 10 µM, it cannot be used in organelles where [Ca2+] is much higher, such as in the lumen of endoplasmic/sarcoplasmic reticulum (ER/SR) and mitochondria. However, some modifications made on aequorin itself or on coelenterazine, its lipophilic prosthetic luminophore, and the addition of targeting sequences or the fusion with resident proteins allowed the specific organelle localization and the measurements of intra-organelle Ca2+ levels. In the last years, the development of multiwell plate readers has opened the possibility to perform aequorin-based high-throughput screenings and has overcome some limitation of the standard method. Here we present the procedure for expressing, targeting, and reconstituting aequorin in intact cells and for measuring Ca2+ in the bulk cytosol, mitochondria, and ER by a high-throughput screening system.


Subject(s)
Aequorin/chemistry , Calcium/analysis , Luminescent Agents/chemistry , Luminescent Measurements/methods , Aequorin/metabolism , Animals , Calcium/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Luminescent Agents/metabolism , Mitochondria/metabolism , Models, Molecular , Pyrazines/chemistry , Pyrazines/metabolism , Scyphozoa/chemistry
5.
Nat Prod Res ; 33(11): 1646-1649, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29334260

ABSTRACT

Oregano (Origanum vulgare L.) is a common aromatic plant used in Mediterranean and Asian Regions for treating respiratory diseases, painful menstruation, rheumatoid arthritis, etc. Recently its role as an anticancer plant has been suggested, although oregano has been never evaluated into adrenocortical tumour cell models. This study analysed for the first time the anticancer effects of a crude extract of wild mountain oregano (Origanum vulgare L.) in SW13 and H295R cell lines. The crude extract was characterised by GC/MS and the toxic effects of oregano were first analysed by brine shrimp lethality assay. Our findings demonstrated that oregano decreased cell viability, survival, modified cell cycle and induced cell death (through necrotic process) and that the effects can be attributed to a blockade of MAPK and PI3 K/Akt pathways. These results suggest that oregano extract exerts anticancer activities in adrenocortical tumour cell lines, providing evidence for further research in higher models.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Origanum/chemistry , Plant Extracts/pharmacology , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Animals , Artemia/drug effects , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor/methods , Gas Chromatography-Mass Spectrometry , Humans , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/analysis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
7.
Oncotarget ; 8(14): 23978-23995, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28177907

ABSTRACT

BACKGROUND: The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS: Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS: Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS: We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.


Subject(s)
Circadian Clocks/genetics , Adult , Female , Genetic Variation , Humans , Neoplasms/pathology , Polymorphism, Single Nucleotide , Risk Factors
8.
Invest New Drugs ; 34(5): 531-40, 2016 10.
Article in English | MEDLINE | ID: mdl-27177645

ABSTRACT

New therapeutic targets are needed to fight cancer. Aurora kinases (AK) were recently identified as vital key regulators of cell mitosis and have consequently been investigated as therapeutic targets in preclinical and clinical studies. Aurora kinase inhibitors (AKI) have been studied in many cancer types, but their potential capacity to limit or delay metastases has rarely been considered, and never in adrenal tissue. Given the lack of an effective pharmacological therapy for adrenal metastasis and adrenocortical carcinoma, we assessed AKI (VX-680, SNS314, ZM447439) in 2 cell lines (H295R and SW13 cells), 3 cell cultures of primary adrenocortical metastases (from lung cancer), and 4 primary adrenocortical tumor cell cultures. We also tested reversan, which is a P-gp inhibitor (a fundamental efflux pump that can extrude drugs), and we measured AK expression levels in 66 adrenocortical tumor tissue samples. Biomolecular and cellular tests were performed (such as MTT, thymidine assay, Wright's staining, cell cycle and apoptosis analysis, Western blot, qRT-PCR, and mutation analysis). Our results are the first to document AK overexpression in adrenocortical carcinoma as well as in H295R and SW13 cell lines, thus proving the efficacy of AKI against adrenal metastases and in the SW13 cancer cell model. We also demonstrated that reversan and AKI Vx-680 are useless in the H295R cell model, and therefore should not be considered as potential treatments for ACC. Serine/threonine AK inhibition, essentially with VX-680, could be a promising, specific therapeutic tool for eradicating metastases in adrenocortical tissue.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Adolescent , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/metabolism , Adult , Aged , Aurora Kinases/genetics , Aurora Kinases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Child , Child, Preschool , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Infant , Male , Middle Aged , Mutation , Tumor Cells, Cultured , Young Adult
9.
Cancer Invest ; 33(10): 526-31, 2015.
Article in English | MEDLINE | ID: mdl-26536286

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathway is often deregulated in adrenocortical tumors (ACT) but with no concrete data confirming alteration rate. The objective of this study was to evaluate genetic alterations in key components of MAPK pathway. We found one BRAF mutation (p.V600E) and four HRAS silent mutations. No alteration was found in NRAS, KRAS, EGFR genes. The patient carrying BRAF mutation was further characterized by investigating his biomolecular and clinico-pathological findings. Therefore, even if MAPK signaling is activated in ACT, our results suggest that genetic alterations do not seem to represent a frequent mechanism of ACT tumorigenesis.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Mitogen-Activated Protein Kinase 1/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...