Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131275

ABSTRACT

The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies (Abs) against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded ß-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). Five ECLs from the FadL orthologs TP0856, TP0858 and TP0865 were immunodominant. Rabbits and mice immunized with these five PfTrx constructs produced ECL-specific Abs that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. ECL-specific rabbit and mouse Abs also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that ECL-specific Abs promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.

2.
PLoS One ; 19(7): e0307600, 2024.
Article in English | MEDLINE | ID: mdl-39028747

ABSTRACT

BACKGROUND: Venereal syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (TPA), is surging worldwide, underscoring the need for a vaccine with global efficacy. Vaccine development requires an understanding of syphilis epidemiology and clinical presentation as well as genomic characterization of TPA strains circulating within at-risk populations. The aim of this study was to describe the clinical, demographic, and molecular features of early syphilis cases in Cali, Colombia. METHODS AND FINDINGS: We conducted a cross-sectional study to identify individuals with early syphilis (ES) in Cali, Colombia through a city-wide network of public health centers, private sector HIV clinics and laboratory databases from public health institutions. Whole blood (WB), skin biopsies (SB), and genital and oral lesion swabs were obtained for measurement of treponemal burdens by polA quantitative polymerase chain reaction (qPCR) and for whole-genome sequencing (WGS). Among 1,966 individuals screened, 128 participants met enrollment criteria: 112 (87%) with secondary (SS), 15 (12%) with primary (PS) and one with early latent syphilis; 66/128 (52%) self-reported as heterosexual, while 48 (38%) were men who have sex with men (MSM). Genital ulcer swabs had the highest polA copy numbers (67 copies/µl) by qPCR with a positivity rate (PR) of 73%, while SS lesions had 42 polA copies/µl with PR of 62%. WB polA positivity was more frequent in SS than PS (42% vs 7%, respectively; p = 0.009). Isolation of TPA from WB by rabbit infectivity testing (RIT) was achieved in 5 (56%) of 9 ES WB samples tested. WGS from 33 Cali patient samples, along with 10 other genomic sequences from South America (9 from Peru, 1 from Argentina) used as comparators, confirmed that SS14 was the predominant clade, and that half of all samples had mutations associated with macrolide (i.e., azithromycin) resistance. Variability in the outer membrane protein (OMP) and vaccine candidate BamA (TP0326) was mapped onto the protein's predicted structure from AlphaFold. Despite the presence of mutations in several extracellular loops (ECLs), ECL4, an immunodominant loop and proven opsonic target, was highly conserved in this group of Colombian and South American TPA isolates. CONCLUSIONS: This study offers new insights into the sociodemographic and clinical features of venereal syphilis in a highly endemic area of Colombia and illustrates how genomic sequencing of regionally prevalent TPA strains can inform vaccine development.


Subject(s)
Syphilis , Treponema pallidum , Humans , Treponema pallidum/genetics , Treponema pallidum/immunology , Treponema pallidum/isolation & purification , Colombia/epidemiology , Syphilis/epidemiology , Syphilis/microbiology , Cross-Sectional Studies , Male , Adult , Female , Bacterial Vaccines/immunology , Genetic Variation , Vaccine Development , Young Adult , Middle Aged , Whole Genome Sequencing , Animals
3.
J Infect Dis ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884588

ABSTRACT

BACKGROUND: The global resurgence of syphilis necessitates vaccine development. METHODS: We collected ulcer exudates and blood from 17 primary syphilis (PS) participants and skin biopsies and blood from 51 secondary syphilis (SS) participants in Guangzhou, China for Treponema pallidum subsp. pallidum (TPA) qPCR, whole genome sequencing (WGS), and isolation of TPA in rabbits. RESULTS: TPA DNA was detected in 15 of 17 ulcer exudates and 3 of 17 blood PS specimens. TPA DNA was detected in 50 of 51 SS skin biopsies and 27 of 51 blood specimens. TPA was isolated from 47 rabbits with success rates of 71% (12/17) and 69% (35/51), respectively, from ulcer exudates and SS bloods. We obtained paired genomic sequences from 24 clinical samples and corresponding rabbit isolates. Six SS14- and two Nichols-clade genome pairs contained rare discordances. Forty-one of the 51 unique TPA genomes clustered within SS14 subgroups largely from East Asia, while 10 fell into Nichols C and E subgroups. CONCLUSIONS: Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS blood, with TPA isolation in over two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development.


The incidence of new cases of syphilis has skyrocketed globally in the twenty-first century. This global resurgence requires new strategies, including vaccine development. As part of an NIH funded Cooperative Research Center to develop a syphilis vaccine, we established a clinical research site in Guangzhou, China to better define the local syphilis epidemic and obtain samples from patients with primary and secondary syphilis for whole genome sequencing (WGS) of circulating Treponema pallidum strains. Inoculation of rabbits enabled us to obtain T. pallidum genomic sequences from spirochetes disseminating in blood, a compartment of immense importance for syphilis pathogenesis. Collectively, our results further clarify the molecular epidemiology of syphilis in southern China, enrich our understanding of the manifestations of early syphilis, and demonstrate that the genomic sequences of spirochetes obtained by rabbit inoculation accurately represent those of the spirochetes infecting the corresponding patients.

4.
medRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562833

ABSTRACT

Background: HIV-1 vaccine development is a global health priority. Broadly neutralizing antibodies (bnAbs) which target the HIV-1 gp41 membrane-proximal external region (MPER) have some of the highest neutralization breadth. An MPER peptide-liposome vaccine has been found to expand bnAb precursors in monkeys. Methods: The HVTN133 phase 1 clinical trial (NCT03934541) studied the MPER-peptide liposome immunogen in 24 HIV-1 seronegative individuals. Participants were recruited between 15 July 2019 and 18 October 2019 and were randomized in a dose-escalation design to either 500 mcg or 2000 mcg of the MPER-peptide liposome or placebo. Four intramuscular injections were planned at months 0, 2, 6, and 12. Results: The trial was stopped prematurely due to an anaphylaxis reaction in one participant ultimately attributed to vaccine-associated polyethylene glycol. The immunogen induced robust immune responses, including MPER+ serum and blood CD4+ T-cell responses in 95% and 100% of vaccinees, respectively, and 35% (7/20) of vaccine recipients had blood IgG memory B cells with MPER-bnAb binding phenotype. Affinity purification of plasma MPER+ IgG demonstrated tier 2 HIV-1 neutralizing activity in two of five participants after 3 immunizations. Conclusions: MPER-peptide liposomes induced gp41 serum neutralizing epitope-targeted antibodies and memory B-cell responses in humans despite the early termination of the study. These results suggest that the MPER region is a promising target for a candidate HIV vaccine.

5.
Res Sq ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38659814

ABSTRACT

Diverse and rapidly mutating viruses pose challenges to immunogen and vaccine design. In this study, we evaluated the ability of memory B-cells obtained from two independent NHP trials to cross-react with individual HIV-1 vaccine components of two different multivalent immunization strategies. We demonstrated that while an HIV-1 Env multiclade, multivalent immunization regimen resulted in a dominant memory B-cell response that converged toward shared epitopes, in a sequential immunization with clonally-related non-stabilized gp140 HIV-1 Envs followed by SOSIP-stabilized gp140 trimers, the change in immunogen format resulted in repriming of the B-cell response.

6.
Cell ; 187(1): 79-94.e24, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181743

ABSTRACT

The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.


Subject(s)
AIDS Vaccines , HIV-1 , Animals , Humans , Broadly Neutralizing Antibodies , CD4 Antigens , Cell Adhesion Molecules , HIV-1/physiology , Macaca , AIDS Vaccines/immunology
7.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-35547855

ABSTRACT

Clinical diagnosis typically incorporates physical examination, patient history, and various laboratory tests and imaging studies, but makes limited use of the human system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis (Mal-ID) , an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of human immune responses.

8.
NPJ Vaccines ; 8(1): 183, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001122

ABSTRACT

An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.

9.
Proc Natl Acad Sci U S A ; 120(44): e2306465120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871214

ABSTRACT

Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted tissues using sucrose. To achieve efficient and localized delivery of sucrose in animals, we designed a biomimetic lipid nanoparticle (LNP) to target the delivery of sucrose into mouse muscle cells. Using this approach, viral antigen expression in mouse muscle after DNA vaccination was substantially increased and prolonged without inducing local or systemic inflammation or toxicity. The same change in antigen expression would be achieved if the vaccine dose could be increased by 3,000 folds, which is experimentally and clinically impractical due to material restrictions and severe toxicity that will be induced by such a high dose of nucleic acids. The increase in antigen expression augmented the infiltration and activation of antigen-presenting cells, significantly improved vaccine-elicited humoral and T cell responses, and fully protected mice against the viral challenge at a low dose of vaccine. Based on these observations, we conclude that transient inhibition of lysosome function in target tissue by sucrose LNPs is a safe and potent approach to substantially improve nucleic acid-based vaccines.


Subject(s)
Nanoparticles , Nucleic Acids , Vaccines, DNA , Vaccines , Animals , Mice , Nucleic Acid-Based Vaccines , Lysosomes , Sucrose
10.
medRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37905017

ABSTRACT

Background: The global resurgence of syphilis requires novel prevention strategies. Whole genome sequencing (WGS) of Treponema pallidum ( TPA ) using different specimen types is essential for vaccine development. Methods: Patients with primary (PS) and secondary (SS) syphilis were recruited in Guangzhou, China. We collected ulcer exudates and blood from PS participants, and skin biopsies and blood from SS participants for TPA polA polymerase chain reaction (PCR); ulcer exudates and blood were also used to isolate TPA strains by rabbit infectivity testing (RIT). TPA WGS was performed on 52 ulcer exudates and biopsy specimens and 25 matched rabbit isolates. Results: We enrolled 18 PS and 51 SS participants from December 2019 to March 2022. Among PS participants, TPA DNA was detected in 16 (89%) ulcer exudates and three (17%) blood specimens. Among SS participants, TPA DNA was detected in 50 (98%) skin biopsies and 27 (53%) blood specimens. TP A was isolated from 48 rabbits, with a 71% (12/17) success rate from ulcer exudates and 69% (36/52) from SS bloods. Twenty-three matched SS14 clade genomes were virtually identical, while two Nichols clade pairs had discordant tprK sequences. Forty-two of 52 unique TPA genomes clustered in an SS14 East Asia subgroup, while ten fell into two East Asian Nichols subgroups. Conclusions: Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS whole blood, with RIT isolation in over two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development. Summary: We performed Treponema pallidum molecular detection and genome sequencing from multiple specimens collected from early syphilis patients and isolates obtained by rabbit inoculation. Our results support the use of whole genome sequencing from rabbit isolates to inform syphilis vaccine development.

11.
Front Immunol ; 14: 1222267, 2023.
Article in English | MEDLINE | ID: mdl-37675118

ABSTRACT

Introduction: Syphilis, a sexually transmitted infection caused by the spirochete Treponema pallidum (Tp), is resurging globally. Tp's repertoire of outer membrane proteins (OMPs) includes BamA (ß-barrel assembly machinery subunit A/TP0326), a bipartite protein consisting of a 16-stranded ß-barrel with nine extracellular loops (ECLs) and five periplasmic POTRA (polypeptide transport-associated) domains. BamA ECL4 antisera promotes internalization of Tp by rabbit peritoneal macrophages. Methods: Three overlapping BamA ECL4 peptides and a two-stage, phage display strategy, termed "Epivolve" (for epitope evolution) were employed to generate single-chain variable fragments (scFvs). Additionally, antisera generated by immunizing mice and rabbits with BamA ECL4 displayed by a Pyrococcus furiosus thioredoxin scaffold (PfTrxBamA/ECL4). MAbs and antisera reactivities were evaluated by immunoblotting and ELISA. A comparison of murine and rabbit opsonophagocytosis assays was conducted to evaluate the functional ability of the Abs (e.g., opsonization) and validate the mouse assay. Sera from Tp-infected mice (MSS) and rabbits (IRS) were evaluated for ECL4-specific Abs using PfTrxBamA/ECL4 and overlapping ECL4 peptides in immunoblotting and ELISA assays. Results: Each of the five mAbs demonstrated reactivity by immunoblotting and ELISA to nanogram amounts of PfTrxBamA/ECL4. One mAb, containing a unique amino acid sequence in both the light and heavy chains, showed activity in the murine opsonophagocytosis assay. Mice and rabbits hyperimmunized with PfTrxBamA/ECL4 produced opsonic antisera that strongly recognized the ECL presented in a heterologous scaffold and overlapping ECL4 peptides, including S2. In contrast, Abs generated during Tp infection of mice and rabbits poorly recognized the peptides, indicating that S2 contains a subdominant epitope. Discussion: Epivolve produced mAbs target subdominant opsonic epitopes in BamA ECL4, a top syphilis vaccine candidate. The murine opsonophagocytosis assay can serve as an alternative model to investigate the opsonic potential of vaccinogens. Detailed characterization of BamA ECL4-specific Abs provided a means to dissect Ab responses elicited by Tp infection.


Subject(s)
Bacteriophages , Syphilis , Mice , Animals , Rabbits , Treponema pallidum , Antibodies, Monoclonal , Immune Sera , Epitopes
12.
medRxiv ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37546832

ABSTRACT

Background: The continuing increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We conducted a multi-center, observational study to explore Treponema pallidum subsp. pallidum ( TPA ) molecular epidemiology essential for vaccine research by analyzing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. Methods: We enrolled patients with primary (PS), secondary (SS) or early latent (ELS) syphilis from clinics in China, Colombia, Malawi and the United States between November 2019 - May 2022. Inclusion criteria included age ≥18 years, and syphilis confirmation by direct detection methods and/or serological testing. TPA detection and WGS were conducted on lesion swabs, skin biopsies/scrapings, whole blood, and/or rabbit-passaged isolates. We compared our WGS data to publicly available genomes, and analysed TPA populations to identify mutations associated with lineage and geography. Findings: We screened 2,820 patients and enrolled 233 participants - 77 (33%) with PS, 154 (66%) with SS, and two (1%) with ELS. Median age of participants was 28; 66% were cis -gender male, of which 43% reported identifying as "gay", "bisexual", or "other sexuality". Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants demonstrated a predominance of SS14-lineage strains with geographic clustering. Phylogenomic analysis confirmed that Nichols-lineage strains are more genetically diverse than SS14-lineage strains and cluster into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models demonstrated population-specific substitutions, some in outer membrane proteins (OMPs) of interest. Interpretation: Our study involving participants from four countries substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains will be vital for vaccine development and improved understanding of syphilis pathogenesis on a population level. Funding: National Institutes of Health, Bill and Melinda Gates Foundation.

13.
Clin Infect Dis ; 77(12): 1635-1643, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37435958

ABSTRACT

While the coronavirus disease 2019 (COVID-19) pandemic continues to present global challenges, sufficient time has passed to reflect on lessons learned and use those insights to inform policy and approaches to prepare for the next pandemic. In May 2022, the Duke Clinical Research Institute convened a think tank with thought leaders from academia, clinical practice, the pharmaceutical industry, patient advocacy, the National Institutes of Health, the US Food and Drug Administration, and the Centers for Disease Control and Prevention to share, firsthand, expert knowledge of the insights gained from the COVID-19 pandemic and how this acquired knowledge can help inform the next pandemic response. The think tank focused on pandemic preparedness, therapeutics, vaccines, and challenges related to clinical trial design and scale-up during the early phase of a pandemic. Based on the multi-faceted discussions, we outline 10 key steps to an improved and equitable pandemic response.


Subject(s)
COVID-19 , United States , Humans , Pandemics/prevention & control , National Institutes of Health (U.S.)
15.
Front Immunol ; 14: 1155880, 2023.
Article in English | MEDLINE | ID: mdl-37090729

ABSTRACT

Introduction: Hemagglutination inhibition (HAI) antibody titers to seasonal influenza strains are important surrogates for vaccine-elicited protection. However, HAI assays can be variable across labs, with low sensitivity across diverse viruses due to lack of standardization. Performing qualification of these assays on a strain specific level enables the precise and accurate quantification of HAI titers. Influenza A (H3N2) continues to be a predominant circulating subtype in most countries in Europe and North America since 1968 and is thus a focus of influenza vaccine research. Methods: As a part of the National Institutes of Health (NIH)-funded Collaborative Influenza Vaccine Innovation Centers (CIVICs) program, we report on the identification of a robust assay design, rigorous statistical analysis, and complete qualification of an HAI assay using A/Texas/71/2017 as a representative H3N2 strain and guinea pig red blood cells and neuraminidase (NA) inhibitor oseltamivir to prevent NA-mediated agglutination. Results: This qualified HAI assay is precise (calculated by the geometric coefficient of variation (GCV)) for intermediate precision and intra-operator variability, accurate calculated by relative error, perfectly linear (slope of -1, R-Square 1), robust (<25% GCV) and depicts high specificity and sensitivity. This HAI method was successfully qualified for another H3N2 influenza strain A/Singapore/INFIMH-16-0019/2016, meeting all pre-specified acceptance criteria. Discussion: These results demonstrate that HAI qualification and data generation for new influenza strains can be achieved efficiently with minimal extra testing and development. We report on a qualified and adaptable influenza serology method and analysis strategy to measure quantifiable HAI titers to define correlates of vaccine mediated protection in human clinical trials.


Subject(s)
Influenza Vaccines , Influenza, Human , United States , Humans , Animals , Guinea Pigs , Influenza A Virus, H3N2 Subtype , Hemagglutination , Antibodies, Viral
16.
Cell Rep ; 42(3): 112255, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36924501

ABSTRACT

Infants and children infected with human immunodeficiency virus (HIV)-1 have been shown to develop neutralizing antibodies (nAbs) against heterologous HIV-1 strains, characteristic of broadly nAbs (bnAbs). Thus, having a neonatal model for the induction of heterologous HIV-1 nAbs may provide insights into the mechanisms of neonatal bnAb development. Here, we describe a neonatal model for heterologous HIV-1 nAb induction in pathogenic simian-HIV (SHIV)-infected rhesus macaques (RMs). Viral envelope (env) evolution showed mutations at multiple sites, including nAb epitopes. All 13 RMs generated plasma autologous HIV-1 nAbs. However, 8/13 (62%) RMs generated heterologous HIV-1 nAbs with increasing potency over time, albeit with limited breadth, and mapped to multiple nAb epitopes, suggestive of a polyclonal response. Moreover, plasma heterologous HIV-1 nAb development was associated with antigen-specific, lymph-node-derived germinal center activity. We define a neonatal model for heterologous HIV-1 nAb induction that may inform future pediatric HIV-1 vaccines for bnAb induction in infants and children.


Subject(s)
Communicable Diseases , HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Infant , Infant, Newborn , Humans , Child , Macaca mulatta , Broadly Neutralizing Antibodies , HIV Antibodies , Antibodies, Neutralizing , Epitopes
17.
Front Immunol ; 14: 1078976, 2023.
Article in English | MEDLINE | ID: mdl-36860874

ABSTRACT

Children with complete DiGeorge anomaly (cDGA) have congenital athymia, resulting in severe T cell immunodeficiency and susceptibility to a broad range of infections. We report the clinical course, immunologic phenotypes, treatment, and outcomes of three cases of disseminated nontuberculous mycobacterial infections (NTM) in patients with cDGA who underwent cultured thymus tissue implantation (CTTI). Two patients were diagnosed with Mycobacterium avium complex (MAC) and one patient with Mycobacterium kansasii. All three patients required protracted therapy with multiple antimycobacterial agents. One patient, who was treated with steroids due to concern for immune reconstitution inflammatory syndrome (IRIS), died due to MAC infection. Two patients have completed therapy and are alive and well. T cell counts and cultured thymus tissue biopsies demonstrated good thymic function and thymopoiesis despite NTM infection. Based on our experience with these three patients, we recommend that providers strongly consider macrolide prophylaxis upon diagnosis of cDGA. We obtain mycobacterial blood cultures when cDGA patients have fevers without a localizing source. In cDGA patients with disseminated NTM, treatment should consist of at least two antimycobacterial medications and be provided in close consultation with an infectious diseases subspecialist. Therapy should be continued until T cell reconstitution is achieved.


Subject(s)
DiGeorge Syndrome , Mycobacterium avium-intracellulare Infection , Humans , DiGeorge Syndrome/complications , Thymus Gland , Anti-Bacterial Agents , Biopsy , Mycobacterium avium Complex
18.
Birth Defects Res ; 115(2): 188-204, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36177676

ABSTRACT

BACKGROUND: Belimumab is approved for active, autoantibody-positive systemic lupus erythematosus (SLE) and lupus nephritis, but limited data exist regarding its use in pregnancy. The Belimumab Pregnancy Registry (BPR, GSK Study BEL114256; NCT01532310) was created to evaluate pregnancy and infant outcomes following belimumab exposure. METHODS: Individuals with SLE exposed to belimumab from 4 months before and/or during pregnancy can enroll into the BPR. The primary outcome is major birth defects; secondary outcomes include miscarriages, stillbirths, elective termination, pre-term birth, neonatal death, small for gestational age, and adverse infant outcomes during the first year of life. Belimumab exposure timing, concomitant medications, and other potential confounding factors are also collected. Data up to March 8, 2021, are reported descriptively. RESULTS: From an expected sample size target of 500 prospective pregnancies with a known outcome, only 55 were enrolled in the study. Among these, two pregnancy losses and 53 pregnancies with a live birth outcome were reported. Ten of the 53 live birth pregnancies resulted in a major birth defect. Ten pregnancies were enrolled after the pregnancy outcome occurred and were examined retrospectively (four live births with no defects, four miscarriages, and two elective terminations). There was no indication or pattern of birth defects associated with belimumab. CONCLUSIONS: Low recruitment numbers for the BPR and incomplete information limit the conclusions regarding belimumab exposure during pregnancy. There was no pattern or common mechanism of birth defects associated with belimumab within the BPR data.


Subject(s)
Abortion, Spontaneous , Lupus Erythematosus, Systemic , Female , Humans , Infant , Infant, Newborn , Pregnancy , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/drug therapy , Prospective Studies , Registries , Retrospective Studies , Clinical Studies as Topic
19.
mBio ; 13(6): e0254622, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36314798

ABSTRACT

The first encounter with influenza virus biases later immune responses. This "immune imprinting," formerly from infection within a few years of birth, is in the United States now largely from immunization with a quadrivalent, split vaccine (IIV4 [quadrivalent inactivated influenza vaccine]). In a pilot study of IIV4 imprinting, we used single-cell cultures, next-generation sequencing, and plasma antibody proteomics to characterize the primary antibody responses to influenza in two infants during their first 2 years of seasonal influenza vaccination. One infant, who received only a single vaccination in year 1, contracted an influenza B virus (IBV) infection between the 2 years, allowing us to compare imprinting by infection and vaccination. That infant had a shift in hemagglutinin (HA)-reactive B cell specificity from largely influenza A virus (IAV) specific in year 1 to IBV specific in year 2, both before and after the year 2 vaccination. HA-reactive B cells from the other infant maintained a more evenly distributed specificity. In year 2, class-switched HA-specific B cell IGHV somatic hypermutation (SHM) levels reached the average levels seen in adults. The HA-reactive plasma antibody repertoires of both infants comprised a relatively small number of antibody clonotypes, with one or two very abundant clonotypes. Thus, after the year 2 boost, both infants had overall B cell profiles that resembled those of adult controls. IMPORTANCE Influenza virus is a moving target for the immune system. Variants emerge that escape protection from antibodies elicited by a previously circulating variant ("antigenic drift"). The immune system usually responds to a drifted influenza virus by mutating existing antibodies rather than by producing entirely new ones. Thus, immune memory of the earliest influenza virus exposure has a major influence on later responses to infection or vaccination ("immune imprinting"). In the many studies of influenza immunity in adult subjects, imprinting has been from an early infection, since only in the past 2 decades have infants received influenza immunizations. The work reported in this paper is a pilot study of imprinting by the flu vaccine in two infants, who received the vaccine before experiencing an influenza virus infection. The results suggest that a quadrivalent (four-subtype) vaccine may provide an immune imprint less dominated by one subtype than does a monovalent infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Adult , Humans , Infant , Pilot Projects , Influenza B virus , Vaccination , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus
20.
Sci Adv ; 8(38): eabq0273, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149967

ABSTRACT

To develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120. Immunization with Q11-conjugated gp120 vaccine (gp120-Q11) demonstrated higher tier 1 neutralization, ADCP, and ADCC as compared to soluble gp120. Moreover, Q11 conjugation altered the Fc N-glycosylation profile of antigen-specific antibodies, leading to a phenotype associated with increased ADCC in animals immunized with gp120-Q11. Thus, this nanomaterial vaccine strategy can enhance non-neutralizing antibody functions possibly through modulation of immunoglobulin G Fc N-glycosylation.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Nanofibers , Animals , Glycosylation , HIV Antibodies , HIV Infections/prevention & control , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G , Vaccines, Subunit
SELECTION OF CITATIONS
SEARCH DETAIL