Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Small ; : e2308963, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38461524

The precise and reversible detection of hydrogen sulfide (H2 S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2 S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2 S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2 S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2 S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2 S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2 S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.

2.
Small Methods ; : e2300969, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38095424

The surface treatment for a polymer-ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic-particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid-phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid-phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO-SM). Thermal interface materials (TIM) prepared with MgO-SM and epoxy show a high thermal conductivity of ≈7.5 W m-1 K-1 , which is significantly higher than 4.5 W m-1 K-1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid-phase sintering is proposed as a fabrication method for a next-generation ceramic-filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly-crystal MgO-SM (produced at a low temperature) has a higher thermal conductivity than a single-crystal MgO (produced at a high temperature).

3.
Nat Commun ; 14(1): 233, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36697397

The accurate detection and identification of volatile aromatic hydrocarbons, which are highly toxic pollutants, are essential for assessing indoor and outdoor air qualities and protecting humans from their sources. However, real-time and on-site monitoring of aromatic hydrocarbons has been limited by insufficient sensor selectivity. Addressing the issue, bilayer oxide chemiresistors are developed using Rh-SnO2 gas-sensing films and catalytic CeO2 overlayers for rapidly and cost-effectively detecting traces of aromatic hydrocarbons in a highly discriminative and quantitative manner, even in gas mixtures. The sensing mechanism underlying the exceptional performance of bilayer sensor is systematically elucidated in relation to oxidative filtering of interferants by the CeO2 overlayer. Moreover, CeO2-induced selective detection is validated using SnO2, Pt-SnO2, Au-SnO2, In2O3, Rh-In2O3, Au-In2O3, WO3, and ZnO sensors. Furthermore, sensor arrays are employed to enable pattern recognition capable of discriminating between aromatic gases and non-aromatic interferants and quantifying volatile aromatic hydrocarbon classifications.

4.
ACS Appl Mater Interfaces ; 15(5): 7102-7111, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36700612

Real-time breath isoprene sensing provides noninvasive methods for monitoring human metabolism and early diagnosis of cardiovascular diseases. Nonetheless, the stable alkene structure and high humidity of the breath hinder sensitive and selective isoprene detection. In this work, we derived well-defined Co3O4@polyoxometalate yolk-shell structures using a metal-organic framework template. The inner space, including highly catalytic Co3O4 yolks surrounded by a semipermeable polyoxometalate shell, enables stable isoprene to be reformed to reactive intermediate species by increasing the gas residence time and the reaction with the inner catalyst. This sensor exhibited selective isoprene detection with an extremely high chemiresistive response (180.6) and low detection limit (0.58 ppb). The high sensing performance can be attributed to electronic sensitization and catalytic promotion effects. In addition, the reforming reaction of isoprene is further confirmed by the proton transfer reaction-quadrupole mass spectrometry analysis. The practical feasibility of this sensor in smart healthcare applications is exhibited by monitoring muscle activity during the workout.


Nanotechnology , Oxides , Humans , Breath Tests/methods
5.
Chem Commun (Camb) ; 58(36): 5439-5454, 2022 May 03.
Article En | MEDLINE | ID: mdl-35415739

Oxide chemiresistors have mostly been used to detect reactive gases such as ethanol, acetone, formaldehyde, nitric dioxide, and carbon monoxide. However, the selective and sensitive detection of volatile aromatic compounds such as benzene, toluene, and xylene, which are extremely toxic and harmful, using oxide chemiresistors remains challenging because of the molecular stability of benzene rings containing chemicals. Moreover, the performance of the sensing materials is insufficient to detect trace concentration levels of volatile aromatic compounds, which lead to harmful effects on human beings. Here, the strategies for designing highly selective and sensitive volatile aromatic compound gas sensors using oxide chemiresistors were suggested and reviewed. Key approaches include the use of thermal activation, design of sensing materials with high catalytic activity, the utilization of catalytic microreactors and bilayer structures with catalytic overlayer, and the pretreatment of analyte gases or post analysis of sensing signals. In addition, future perspectives from the viewpoint of designing sensing materials and sensor structures for high-performance and robust volatile aromatic compounds gas sensors are provided. Finally, we discuss possible applications of the sensors and sensor arrays.


Oxides , Smart Materials , Benzene , Gases/chemistry , Humans , Toluene
6.
ACS Appl Mater Interfaces ; 14(9): 11587-11596, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35174700

Precise detection of breath isoprene can provide valuable information for monitoring the physical and physiological status of human beings or for the early diagnosis of cardiovascular diseases. However, the extremely low concentration and low chemical reactivity of breath isoprene hamper the selective and sensitive detection of isoprene using oxide semiconductor chemiresistors. Herein, we report that macroporous WO3 microspheres whose inner macropores are surrounded by Au nanoparticles exhibit a high response (resistance ratio = 11.3) to 0.1 ppm isoprene under highly humid conditions at 275 °C and an extremely low detection limit (0.2 ppb). Furthermore, the sensor showed excellent selectivity to isoprene over five interferants that could be exhaled by humans. Notably, the selectivity to isoprene is critically dependent on the location of Au nanocatalysts and macroporosity. The mechanism underlying the selective isoprene detection is investigated in relation to the reforming of less reactive isoprene into more reactive intermediate species promoted by macroporous catalytic reactors, which is confirmed by the analysis using a proton transfer reaction quadrupole mass spectrometer. The sensor for breath analysis has high potential for simple physical and physiological monitoring as well as disease diagnosis.


Breath Tests/methods , Butadienes/analysis , Gold Compounds/chemistry , Hemiterpenes/analysis , Metal Nanoparticles/chemistry , Oxides/chemistry , Tungsten/chemistry , Catalysis , Humans , Mass Spectrometry/methods , Microspheres , Sensitivity and Specificity , Temperature
7.
ACS Cent Sci ; 7(7): 1176-1182, 2021 Jul 28.
Article En | MEDLINE | ID: mdl-34345668

Metal-organic frameworks (MOFs) with high surface area, tunable porosity, and diverse structures are promising platforms for chemiresistors; however, they often exhibit low sensitivity, poor selectivity, and irreversibility in gas sensing, hindering their practical applications. Herein, we report that hybrids of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) nanoflakes and Fe2O3 nanoparticles exhibit highly sensitive, selective, and reversible detection of NO2 at 20 °C. The key parameters to determine their response, selectivity, and recovery are discussed in terms of the size of the Cu3(HHTP)2 nanoflakes, the interaction between the MOFs and NO2, and an increase in the concentration and lifetime of holes facilitated by visible-light photoactivation and charge-separating energy band alignment of the hybrids. These photoactivated MOF-oxide hybrids suggest a new strategy for designing high-performance MOF-based gas sensors.

8.
Nat Commun ; 12(1): 4955, 2021 08 16.
Article En | MEDLINE | ID: mdl-34400624

Formaldehyde, a probable carcinogen, is a ubiquitous indoor pollutant, but its highly selective detection has been a long-standing challenge. Herein, a chemiresistive sensor that can detect ppb-level formaldehyde in an exclusive manner at room temperature is designed. The TiO2 sensor exhibits under UV illumination highly selective detection of formaldehyde and ethanol with negligible cross-responses to other indoor pollutants. The coating of a mixed matrix membrane (MMM) composed of zeolitic imidazole framework (ZIF-7) nanoparticles and polymers on TiO2 sensing films removed ethanol interference completely by molecular sieving, enabling an ultrahigh selectivity (response ratio > 50) and response (resistance ratio > 1,100) to 5 ppm formaldehyde at room temperature. Furthermore, a monolithic and flexible sensor is fabricated successfully using a TiO2 film sandwiched between a flexible polyethylene terephthalate substrate and MMM overlayer. Our work provides a strategy to achieve exclusive selectivity and high response to formaldehyde, demonstrating the promising potential of flexible gas sensors for indoor air monitoring.

9.
Small ; 17(20): e2100438, 2021 May.
Article En | MEDLINE | ID: mdl-33817966

The highly selective detection of trace gases using transparent sensors at room temperature remains challenging. Herein, transparent nanopatterned chemiresistors composed of aligned 1D Au-SnO2 nanofibers, which can detect toxic NO2 gas at room temperature under visible light illumination is reported. Ten straight Au-SnO2 nanofibers are patterned on a glass substrate with transparent electrodes assisted by direct-write, near-field electrospinning, whose extremely low coverage of sensing materials (≈0.3%) lead to the high transparency (≈93%) of the sensor. The sensor exhibits a highly selective, sensitive, and reproducible response to sub-ppm levels of NO2 , and its detection limit is as low as 6 ppb. The unique room-temperature NO2 sensing under visible light emanates from the localized surface plasmonic resonance effect of Au nanoparticles, thereby enabling the design of new transparent oxide-based gas sensors without external heaters or light sources. The patterning of nanofibers with extremely low coverage provides a general strategy to design diverse compositions of gas sensors, which can facilitate the development of a wide range of new applications in transparent electronics and smart windows wirelessly connected to the Internet of Things.

10.
Adv Sci (Weinh) ; 8(6): 2004078, 2021 Mar.
Article En | MEDLINE | ID: mdl-33747750

Volatile aromatic compounds are major air pollutants, and their health impacts should be assessed accurately based on the concentration and composition of gas mixtures. Herein, novel bilayer sensors consisting of a SnO2 sensing layer and three different xRh-TiO2 catalytic overlayers (x = 0.5, 1, and 2 wt%) are designed for the new functionalities such as the selective detection, discrimination, and analysis of benzene, toluene, and p-xylene. The 2Rh-TiO2/SnO2 bilayer sensor shows a high selectivity and response toward ppm- and sub-ppm-levels of benzene over a wide range of sensing temperatures (325-425 °C). An array of 0.5Rh-, 1Rh-, and 2Rh-TiO2/SnO2 sensors exhibits discrimination and composition analyses of aromatic compounds. The conversion of gases into more active species at moderate catalytic activation and the complete oxidation of gases into non-reactive forms by excessive catalytic promotion are proposed as the reasons behind the enhancement and suppression of analyte gases, respectively. Analysis using proton transfer reaction-quadrupole mass spectrometer (PTR-QMS) is performed to verify the above proposals. Although the sensing characteristics exhibit mild moisture interference, bilayer sensors with systematic and tailored control of gas selectivity and response provide new pathways for monitoring aromatic air pollutants and evaluating their health impacts.

11.
Adv Sci (Weinh) ; 7(7): 1903093, 2020 Apr.
Article En | MEDLINE | ID: mdl-32274308

A highly selective and sensitive detection of the plant hormone ethylene, particularly at low concentrations, is essential for controlling the growth, development, and senescence of plants, as well as for ripening of fruits. However, this remains challenging because of the non-polarity and low reactivity of ethylene. Herein, a strategy for detecting ethylene at a sub-ppm-level is proposed by using oxide semiconductor chemiresistors with a nanoscale oxide catalytic overlayer. The SnO2 sensor coated with the nanoscale catalytic Cr2O3 overlayer exhibits rapid sensing kinetics, good stability, and an unprecedentedly high ethylene selectivity with exceptional gas response (R a/R g - 1, where R a represents the resistance in air and R g represents the resistance in gas) of 16.8 at an ethylene concentration of 2.5 ppm at 350 °C. The sensing mechanism underlying the ultraselective and highly sensitive ethylene detection in the unique bilayer sensor is systematically investigated with regard to the location, configuration, and thickness of the catalytic Cr2O3 overlayer. The mechanism involves the effective catalytic oxidation of interfering gases into less- or non-reactive species, without limiting the analyte gas transport. The sensor exhibits a promising potential for achieving a precise quantitative assessment of the ripening of five different fruits.

12.
ACS Appl Mater Interfaces ; 11(35): 32169-32177, 2019 Sep 04.
Article En | MEDLINE | ID: mdl-31398287

Noble metals or oxide catalysts have traditionally been loaded or doped to enhance the gas sensing properties of oxide semiconductor chemiresistors. However, the selective detection of various chemicals for a wide range of new applications remains a challenging problem. In this paper, we propose a novel bilayer design with an oxide chemiresistor sensing layer and nanoscale catalytic Au overlayer to provide high controllability for gas sensing characteristics. The Au nanocluster overlayer significantly enhances the methylbenzene response of a SnO2 thick film sensor by reforming gases into more reactive species and suppresses the responses to reactive interference gases through oxidative filtering, leading to excellent selectivity to methylbenzene. Gas sensing characteristics can be tuned by controlling the morphology, amount, and number density of Au nanoclusters through the variation in the Au coating thickness (0.5-3 nm) and thermal annealing conditions (0.5-4 h at 550 °C). Furthermore, the general validity of the proposed Au-coated bilayer sensor design was confirmed through the enhancement of response and selectivity toward methylbenzenes by coating Au nanoclusters onto ZnO and Co3O4 sensors. The sensing mechanism, advantages, and potential applications of bilayer sensors are discussed from the perspective of the separation of sensing and catalytic reactions, as well as the reforming and oxidation of analyte gases in association with the configuration of the sensing layer and Au catalytic overlayer.

...