Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Bot ; 107(9): 1296-1308, 2020 09.
Article in English | MEDLINE | ID: mdl-33001458

ABSTRACT

PREMISE: Recent phylogeographic work suggests the existence of latitudinal gradients in genetic diversity in northern Mexican plants, but very few studies have examined plants of the Chihuahuan Desert. Tidestromia lanuginosa is a morphologically variable annual species whose distribution includes the Chihuahuan Desert Region. Here we undertook phylogeographic analyses of chloroplast loci in this species to test whether genetic diversity and differentiation of Mexican populations of T. lanuginosa change along a latitudinal gradient and whether diversity is higher in Coahuila, consistent with ideas of lower plant community turnover during the Pleistocene. METHODS: Haplotype network, maximum likelihood tree, and Bayesian phylogenetic haplotype were reconstructed, and genetic diversity was assessed among 26 populations. Barrier analysis was used to explore barriers to gene flow. RESULTS: Four major population groups were identified, corresponding with physiographic provinces in Mexico. Each population group displayed high levels of genetic structure, haplotype, and nucleotide diversity. Diversity was highest in southern populations across the species as a whole and among the Chihuahuan Desert populations. CONCLUSIONS: Tidestromia lanuginosa provides an important example of high phylogeographic and genetic diversity in plants of northern Mexico. Barriers to gene flow among the major population groups have most likely been due to a combination of orographic, climatic, and edaphic variables. The high genetic diversity of T. lanuginosa in southern and central Coahuila is consistent with the hypothesis of full-glacial refugia for arid-adapted plants in this area, and highlights the importance of this region as a center of diversity for the Chihuahuan Desert flora.


Subject(s)
Genetic Variation , Refugium , Bayes Theorem , Mexico , Phylogeny
2.
Am J Bot ; 107(5): 707-725, 2020 05.
Article in English | MEDLINE | ID: mdl-32432350

ABSTRACT

PREMISE: Medullary bundles, i.e., vascular units in the pith, have evolved multiple times in vascular plants. However, no study has ever explored their anatomical diversity and evolution within a phylogenetic framework. Here, we investigated the development of the primary vascular system within Nyctaginaceae showing how medullary bundles diversified within the family. METHODS: Development of 62 species from 25 of the 31 genera of Nyctaginaceae in stem samples was thoroughly studied with light microscopy and micro-computed tomography. Ancestral states were reconstructed using a maximum likelihood approach. RESULTS: Two subtypes of eusteles were found, the regular eustele, lacking medullary bundles, observed exclusively in representatives of Leucastereae, and the polycyclic eustele, containing medullary bundles, found in all the remaining taxa. Medullary bundles had the same origin and development, but the organization was variable and independent of phyllotaxy. Within the polycyclic eustele, medullary bundles developed first, followed by the formation of a continuous concentric procambium, which forms a ring of vascular bundles enclosing the initially formed medullary bundles. The regular eustele emerged as a synapomorphy of Leucastereae, while the medullary bundles were shown to be a symplesiomorphy for Nyctaginaceae. CONCLUSIONS: Medullary bundles in Nyctaginaceae developed by a single shared pathway, that involved the departure of vascular traces from lateral organs toward the pith. These medullary bundles were encircled by a continuous concentric procambium that also constituted the polycyclic eustele, which was likely a symplesiomorphy for Nyctaginaceae with one single reversion to the regular eustele.


Subject(s)
Nyctaginaceae , Biological Evolution , Likelihood Functions , Phylogeny , X-Ray Microtomography
3.
J Hered ; 111(3): 263-276, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32347944

ABSTRACT

As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile-Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile-Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru.


Subject(s)
Genetic Variation , Whales/genetics , Animal Distribution , Animal Migration , Animals , Brazil , Chile , Feeding Behavior , Female , Genotyping Techniques , Islands , Male , Peru
6.
Gen Comp Endocrinol ; 132(2): 216-22, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-12812768

ABSTRACT

In most species, plasma levels of baseline glucocorticoids such as corticosterone (B) have a circadian rhythm. This rhythm can be entrained by both photoperiod and food intake and is related to aspects of energy intake and metabolism. Marine iguanas (Amblyrhynchus cristatus) offer a unique opportunity to better understand the relative importance of the light:dark cycle versus food intake in influencing the rhythm in baseline B in a natural system. Compared to other species, food intake is not as strictly determined by the phase of the light:dark cycle. Animals feed in the intertidal zone so feeding activity is heavily influenced by the tidal cycle. We measured baseline plasma B levels in free-living iguanas over several 24-h periods that varied in the timing of low tide/foraging activity. We found that baseline B levels were higher during the day relative to night. However, when low tide occurred during the day, baseline B levels dropped coincident with the timing of low tide. Whether the baseline B rhythm (including the drop during foraging) is an endogenous rhythm with a circatidal component, or is simply a result of feeding and associated physiological changes needs to be tested. Together, these data suggest that the baseline B rhythm in marine iguanas is influenced by the tidal cycle/food intake as well as the light:dark cycle.


Subject(s)
Circadian Rhythm/physiology , Corticosterone/blood , Eating/physiology , Iguanas/physiology , Animals , Ecuador , Pacific Ocean , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL