Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med Rep ; 16(4): 5738, 2017 10.
Article in English | MEDLINE | ID: mdl-28849134

ABSTRACT

During the preparation of the figures in the above article, the authors inadvertently duplicated in Fig. 1B, a and b (high and low magnification images) the images that had already appeared as Figs. 5A, a and c (high and low magnification images), respectively, of the following paper: Huerta-Yepez S, Baritaki S, Baay-Guzman G, Hernandez-Luna MA, Hernandez-Cueto A, Vega MI and Bonavida B: Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. Nitric Oxide 29: 17-24, 2013. The revised version of Fig. 1 containing the corrected data for Fig. 1B, a and b (high and low magnification images; the YY1 data) is shown opposite protein expression. All those authors whom the corresponding author was able to contact have agreed to this Corrigendum. The authors regret this error, and apologize for any confusion that it may have caused. [the original article was published in the Molecular Medicine Reports 10: 2279-2286, 2014; DOI: 10.3892/mmr.2014.2504 ].

2.
Mol Med Rep ; 10(5): 2279-86, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25174820

ABSTRACT

Prostate carcinoma (PCa) is one of the most common cancers in men. Prostate-specific antigen (PSA) has been widely used to predict the outcome of PCa and screening with PSA has resulted in a decline in mortality. However, PSA is not an optimal prognostic tool as its sensitivity may be too low to reduce morbidity and mortality. Consequently, there is a demand for additional robust biomarkers for prostate cancer. Death receptor 5 (DR5) has been implicated in the prognosis of several cancers and it has been previously shown that it is negatively regulated by Yin Yang 1 (YY1) in prostate cancer cell lines. The present study investigated the clinical significance of DR5 expression in a prostate cancer patient cohort and its correlation with YY1 expression. Immunohistochemical analysis of protein expression distribution was performed using tissue microarray constructs from 54 primary PCa and 39 prostatic intraepithelial neoplasia (PIN) specimens. DR5 expression was dramatically reduced as a function of higher tumor grade. By contrast, YY1 expression was elevated in PCa tumors as compared with that in PIN, and was increased with higher tumor grade. DR5 had an inverse correlation with YY1 expression. Bioinformatic analyses corroborated these data. The present findings suggested that DR5 and YY1 expression levels may serve as progression biomarkers for prostate cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Neoplasms/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Disease Progression , Gene Expression , Humans , Male , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Tissue Array Analysis , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL